这是我自己学习算法时有关KMP的学习笔记,代码注释的十分的详细,分享给大家,希望对大家有所帮助
在介绍KMP算法之前,先来介绍一下朴素模式匹配算法:
朴素模式匹配算法:
假设要从主串S=”goodgoole”中找到T=”google”这个字串的位置,我们需要一下的步骤:
1,主串S的第一位开始,S与T的前三个字母都能成功匹配,但是S的第四个字母是d,而T的第四位是g,所以主串S的第一位匹配失败
2,然后从主串的第二位开始,会发现主串的第二位字母与T的第一位字母不同,所以匹配失败,然后再从主串的第三位开始,
3,经过这样的依次尝试后,之到主串的第五位开始,S与T的6个字母完全匹配成功
该朴素模式匹配算法的代码实现是:
该算法的功能是返回字串T在主串S中第pos个字符之后的位置,若不存在,则函数返回值为0,前提是T非空且1<pos<StrLength(S)
int Index(char* S,char* T,int pos)//index是索引的意思
{
int i=pos-1;//i用于主串S中当前位置的下标,S[0]是主串T的第一个字符
int j=0;//j用于子串T中当前位置下标值,即T[0]是字串T的第一个字符
while(i<strlen(S)&&j<strlen(T))
{
if(S[i]==T[j])//如果主串S当前的字母与子串的字母相等则继续
{
++i;
++j;
}
else
{
i=i-j+1; //eg:如果第一次匹配时,不相等则使i=i-j+1;即向下走一个字母,以i=0为例,刚开始从主串第一个位置开始,如果S[i]==T[j]一直满足,则i和j同步变化,即i=j;一旦有不相等的字母时,i=i-j+1,实际就是i=1;然后再从主串的第二个字母开始
j=0;//重新匹配时,j又回到T的子串的首位
}
}
if(j==strlen(T))//此时已完成匹配
return i-strlen(T);//返回
else
return 0;
}
KMP模式匹配算法:
KMP算法中把T串各个位置的j值的变化定义为一个数组next,那么next的长度就是T串的长度;
next数组值得推导:
T="abcdex";(前后缀一个字符相等,k值是2,两个字符相等,k值是3,n个k值相等k值就是就是n+1)
1,当j=1时,next[1]=0;
2,当j=2时,j由1到j-1只有字符"a",next[2]=1;
3,当j=3时,j由1到j-1就只有字符串"ab",显然"a"与"b"不相等,所以next[3]=1;
4,同理得:T串的next[j]为011111;
T="ababaaaba";
1,当j=1时,next[1]=0;
2,当j=2时,next[2]=1;
3,当j=3时,next[3]=1;
4,当j=4时,next[4]=2;//j由1到j-1的串是"aba",前缀字符"a"与后缀字符"a"相等,next[4]=2;
5,当j=5时,next[5]=3;//串是"abab",前缀是"ab",后缀是"ab",有两个相同的字符,所以为3
6,当j=6时,next[6]=4;//串是"ababa",前缀是"aba",后缀是"aba",有三个相同的字符,所以为4
7,当j=7时,next[7]=2;//串是"ababaa",前缀字符是"a"与后缀字符"a"相等,有两个相同的字符,所以为2
8,当j=8时,next[8]=2;//串是"ababaaa",前缀字符是"a"与后缀字符"a"相等,有两个相同的字符,所以为2
9,当j=9时,next[9]=3;//串是"ababaaab",前缀字符是"ab",后缀字符也为"ab",有两个相同的字符,所以为3
10,当j=10时,next[10]=4;//串是"ababaaaba",前缀字符是"aba",后缀字符也为"aba",有三个相同的字符,所以为4
KMP模式匹配算法实现
1,通过计算返回子串T的next数组
void get_next(char* T,int* next)
{
int i,j;
i=1;
j=0;
next[1]=0;
while(i<strlen(T))
{
if(j==0||T[i]==T[j])
{
++i;
++j;
next[i]=j;
}//以T="abcdex"为例:该循环的执行顺序:第一步,j=0,执行,(i=2,j=1,next[2]=1)第二步,不符合循环条件,j=next[1]=0,j又变为0为了再次进入循环,(i=3,j=1,next[3]=1)依次往下循环
else
j=next[j];
}
}//这段代码的目的就是为了计算出当前要匹配的串T的next数组
int Index_KMP(char* S,char* T,int pos)
{
int i=pos-1;
int j=0;
int next[255];
get_next(T,next);
while(i<strlen(S)&&j<strlen(T))
{
if(j==0||S[i]==T[j])
{
++i;
++j;
}
else
j=next[j];//起到回溯的作用
}
if(j>=strlen(T))
return i-strlen(T);
else
return 0;
}