题目描述
求1+2+3+…+n,要求不能使用乘除法、for、while、if、else、switch、case等关键字及条件判断语句(A?B:C)。
思路:
递归 + 逻辑短路:
- 通过逻辑运算短路的原理中断递归运算实现1 + 2 + … n
逻辑短路:
逻辑短路指在逻辑运算中,如果能够通过一个逻辑表达式的一部分结果确定最终结果,则不会再继续执行后面的逻辑运算。
- 对于逻辑与( && )运算:操作数中存在 False 即可判断最终结果为 False。
- 例1:
int m = 22;
int n = 33;
(m = m > n) && (n = 666);
cout << "m = " << m << endl;
cout << "n = " << n << endl;
m = 0
n = 33
- 对于逻辑或( || )运算:操作数中存在 True 即可判断最终结果为 True。
- 例2:
int m = 22;
int n = 33;
(m = m < n) || (n =666);
cout << "m = " << m << endl;
cout << "n = " << n << endl;
m = 1
n = 33
所以本题就是根据 与 运算的短路原理,以n = 0作为递归函数的中断条件,实现求和。
C++
在这里插入代码片class Solution {
public:
int Sum_Solution(int n) {
int res;
(res = n) && (res += Sum_Solution(n - 1));
return res;
}
};
Python
# -*- coding:utf-8 -*-
class Solution:
def Sum_Solution(self, n):
# write code here
return n and (n + self.Sum_Solution(n - 1))
参考
https://www.jianshu.com/p/8d95597b1c90