6、多参数优化问题的复杂性与解决方案

多参数优化问题的复杂性与解决方案

1. 多参数编程问题概述

多参数编程涵盖了多种类型的问题,如多参数线性规划(mp - LP)、多参数混合整数线性规划(mp - MILP)等,这些问题在多个领域有着广泛的应用,包括反应调度、过程合成、过程设计、材料设计等。以下是一些常见的多参数编程问题类及其应用的概述:
| 问题类型 | 应用领域 |
| — | — |
| mp - LP | 反应调度、过程合成等 |
| mp - MILP | 过程合成、过程设计等 |
| mp - NLP | 实时优化、非线性模型预测控制等 |
| mp - QP | 线性模型预测控制 |
| mp - MIQP | 线性混合模型预测控制 |

2. 多参数线性规划/二次规划中的退化问题

在许多多参数线性规划(mp - LPs)中,退化情况十分普遍。退化会导致参数向量与优化变量向量之间的非唯一映射,以及参数空间的非唯一划分。这可能会引起临界区域(CRs)的重叠和不连续的优化器,这对于需要平滑稳定控制输入的控制应用来说是非常不可取的。

退化可分为以下几类:
- 原始退化 :在最优解处,活动约束的数量超过优化变量的数量,或者至少有一个基本变量取值为零。从几何角度看,意味着两个解在原始多面体的同一顶点处,但相关的影子价格不同。这通常是由于存在弱冗余约束(即“倾斜”但不与可行区域相交的约束)导致的。
- 对偶退化 :存在不同的原始解满足最优性条件。

针对退化问题,文献中提出了以下几种处理方法:
- <

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值