模式识别与生物信息学中的生物数据任务
在生物信息学领域,处理和分析生物数据是核心工作。下面将详细介绍生物信息学中针对生物数据的主要任务。
1. 序列比对与比较
1.1 比对的概念与类型
比对是将两个或多个序列进行相互排列,以显示它们的相似之处和不同之处。主要的比对类型有全局比对和局部比对:
- 全局比对 :旨在使序列在整个长度上的匹配数量最大化,适合已知非常相似的序列。例如,在比较亲缘关系较近物种的同源基因序列时,全局比对能很好地找出整体的相似性。
- 局部比对 :为序列间的局部匹配提供最高得分,当序列整体相似度不高,但内部有短片段具有高度相似性时,局部比对可找出这些重要区域。
1.2 比对算法
- 动态规划(Smith–Waterman算法) :能对两个或多个生物序列进行高效且全面的比较。在比对过程中,可能需要在序列中插入空格,连续的空格定义为缺口,最终得到两个序列的数学最优比对,并生成相似度得分。
- 其他流行的比对技术 :如BLAST、FASTA和PSI - BLAST等。
1.3 多序列比对
多序列比对将一组序列排列,使同源序列位于同一列。其计分方式有多种,一种常见的方法是将多序列比对中所有诱导的两两比对得分相加。在多序列比对中,很少区分全局、局部等不同形式的比对。
以下是序列比对任务的流程图:
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



