
机器学习
文章平均质量分 95
月涌大江流丶
这个作者很懒,什么都没留下…
展开
-
【机器学习】1:K-means聚类算法原理
K-means聚类原创 2018-04-08 22:48:54 · 4966 阅读 · 1 评论 -
【机器学习】2:DBSCAN聚类算法原理
前言:无监督学习想快一点复习完,就转入有监督学习 –—-—-—-—-—-—-—-—-—-—-—-—–—-—-—-—-—-—-—-——-—-—-– –—-—-—-—-—-—-—-—-—-—-—-—–—-—-—-—-—-—-—-——-—-—-–什么是无监督学习?无监督学习也是相对于有监督学习来说的,因为现实中遇到的大部分数据都是未标记的样本,要想通过有监督的学习就需要事先人为标注好样本标签,这个成原创 2018-04-09 10:55:42 · 4792 阅读 · 0 评论 -
【机器学习】3:Density Peaks聚类算法实现(局部密度聚类算法)
Density Peaks聚类算法原创 2018-04-10 23:37:57 · 13195 阅读 · 10 评论 -
【机器学习】4:层次聚类原理介绍(未完善)
待完善–—-—-—-—-—-—-—-—-—-—-—-—–—-—-—-—-—-—-—-——-—-—-—-—-—-—-—-—-—-—-—-—-—-——- –—-—-—-—-—-—-—-—-—-—-—-—–—-—-—-—-—-—-—-——-—-—-—-—-—-—-—-—-—-—-—-—-—-——-系列推荐:【监督学习】1:KNN算法实现手写数字识别的三种方法 –—-—-—-—-—-—-—-—-—-—-原创 2018-04-25 18:55:08 · 533 阅读 · 0 评论 -
【机器学习】5:谱聚类算法原理介绍
前言:学习谱聚类,最好有一些图论、矩阵分解(SVD)方面的知识,这样会更加有利于谱聚类的学习。当然,谱聚类理解起来并不困难,实际操作也大多是谱聚类+K-means聚类联合使用的。 –—-—-—-—-—-—-—-—-—-—-—-—–—-—-—-—-—-—-—-——-—-—-—-—-—-—-—-—-—-—-—-—-—-——- –—-—-—-—-—-—-—-—-—-—-—-—–—-—-—-—-—-—-原创 2018-04-25 18:55:36 · 2600 阅读 · 1 评论 -
【机器学习】6:K-近邻(KNN)算法实现手写数字识别
没人会看的开场白:本来觉得自己从数据建模转人工智能方向应该问题不大(自我感觉自己算法学的不错)。结果一个K-邻近实现手写数字识别的代码就让我改了三四天。虽然网上这方面的代码是很多,但是我运行了好几个,结果都不是很理想。一次偶然的念想——为什么我不把这些代码的优点结合在一起呢,于是说做就做,年轻人嘛,反正有时间燥起来,再加上自己准备的毕业论文也是这个,动动手总有益处,于是就拙笔于此,有更好的建议与意见原创 2017-12-30 16:37:24 · 42198 阅读 · 23 评论 -
【机器学习】7:逻辑回归原理(Logistic Regression,LR)
逻辑回归原理原创 2019-04-21 20:10:19 · 1099 阅读 · 0 评论 -
【机器学习】8:决策树原理(Decision Tree)
待完善原创 2019-04-21 21:55:55 · 399 阅读 · 0 评论 -
【机器学习】9:朴素贝叶斯原理
贝叶斯原理原创 2019-04-21 21:57:36 · 845 阅读 · 0 评论 -
【机器学习】10:朴素贝叶斯做文本分类
待完善原创 2019-04-23 18:30:37 · 1268 阅读 · 0 评论 -
【机器学习】11:支持向量机SVM基础原理
支持向量机SVM基础原理原创 2019-05-08 11:25:16 · 1544 阅读 · 1 评论 -
【机器学习】12:支持向量机SVM软间隔与核函数
支持向量机SVM的软间隔、核函数原创 2019-07-08 14:56:17 · 1018 阅读 · 0 评论