机器学习
文章平均质量分 90
月涌大江流丶
这个作者很懒,什么都没留下…
展开
-
【机器学习】1:K-means聚类算法原理
前言:粗略研究完神经网络基础——BP、CNN、RNN、LSTM网络后自己算是松懈了很多,好长的时间都没有坚持再更新博客了。“腐败”生活了这么久,还是要找到自己一点乐趣吧,于是想了一想,决定把《机器学习》的算法研究过得都重新梳理一遍,于是就从无监督学习——聚类开始了 –—-—-—-—-—-—-—-—-—-—-—-—–—-—-—-—-—-—-—-——-—-—-—-—-—-—-—-—-—-—-—-—-—原创 2018-04-08 22:48:54 · 4874 阅读 · 0 评论 -
【机器学习】2:DBSCAN聚类算法原理
前言:无监督学习想快一点复习完,就转入有监督学习 –—-—-—-—-—-—-—-—-—-—-—-—–—-—-—-—-—-—-—-——-—-—-– –—-—-—-—-—-—-—-—-—-—-—-—–—-—-—-—-—-—-—-——-—-—-–什么是无监督学习?无监督学习也是相对于有监督学习来说的,因为现实中遇到的大部分数据都是未标记的样本,要想通过有监督的学习就需要事先人为标注好样本标签,这个成原创 2018-04-09 10:55:42 · 4681 阅读 · 0 评论 -
【机器学习】3:Density Peaks聚类算法实现(局部密度聚类算法)
前言:Density Peaks聚类算法和DBSCAN聚类算法有相似的地方,两者都是基于密度的聚类方式。自己是在学习无监督学习过程中,无意间见到介绍这种聚类算法的文章,感觉Density Peaks聚类算法方法很新奇,操作也很简答,于是自己也动手写一下了。 –—-—-—-—-—-—-—-—-—-—-—-—–—-—-—-—-—-—-—-——-—-—-—-—-—-—-—-—-—-—-—-—-—-——-原创 2018-04-10 23:37:57 · 12574 阅读 · 10 评论 -
【机器学习】4:层次聚类原理介绍(未完善)
待完善–—-—-—-—-—-—-—-—-—-—-—-—–—-—-—-—-—-—-—-——-—-—-—-—-—-—-—-—-—-—-—-—-—-——- –—-—-—-—-—-—-—-—-—-—-—-—–—-—-—-—-—-—-—-——-—-—-—-—-—-—-—-—-—-—-—-—-—-——-系列推荐:【监督学习】1:KNN算法实现手写数字识别的三种方法 –—-—-—-—-—-—-—-—-—-—-原创 2018-04-25 18:55:08 · 512 阅读 · 0 评论 -
【机器学习】5:谱聚类算法原理介绍
前言:学习谱聚类,最好有一些图论、矩阵分解(SVD)方面的知识,这样会更加有利于谱聚类的学习。当然,谱聚类理解起来并不困难,实际操作也大多是谱聚类+K-means聚类联合使用的。 –—-—-—-—-—-—-—-—-—-—-—-—–—-—-—-—-—-—-—-——-—-—-—-—-—-—-—-—-—-—-—-—-—-——- –—-—-—-—-—-—-—-—-—-—-—-—–—-—-—-—-—-—-原创 2018-04-25 18:55:36 · 2408 阅读 · 1 评论 -
【机器学习】6:K-近邻(KNN)算法实现手写数字识别的三种方法
没人会看的开场白:本来觉得自己从数据建模转人工智能方向应该问题不大(自我感觉自己算法学的不错)。结果一个K-邻近实现手写数字识别的代码就让我改了三四天。虽然网上这方面的代码是很多,但是我运行了好几个,结果都不是很理想。一次偶然的念想——为什么我不把这些代码的优点结合在一起呢,于是说做就做,年轻人嘛,反正有时间燥起来,再加上自己准备的毕业论文也是这个,动动手总有益处,于是就拙笔于此,有更好的建议与意见原创 2017-12-30 16:37:24 · 39079 阅读 · 23 评论 -
【机器学习】7:逻辑回归原理(Logistic Regression,LR)
待完善原创 2019-04-21 20:10:19 · 964 阅读 · 0 评论 -
【机器学习】8:决策树原理(Decision Tree)
待完善原创 2019-04-21 21:55:55 · 382 阅读 · 0 评论 -
【机器学习】9:朴素贝叶斯原理
待完善原创 2019-04-21 21:57:36 · 767 阅读 · 0 评论 -
【机器学习】10:朴素贝叶斯做文本分类
待完善原创 2019-04-23 18:30:37 · 1245 阅读 · 0 评论 -
【机器学习】11:支持向量机原理1:基础原理
一、回顾:逻辑回归在逻辑回归里,损失costcostcost与xxx的关系如下:结合Sigmod函数可得:当y=1y=1y=1是正例的情况下,cost(y=1)=−log(hθ(x))cost(y=1)=-log(h_θ(x))cost(y=1)=−log(hθ(x)),xxx越大,costcostcost越小;当y=0y=0y=0是负例的情况下,cost(y=0)=−log(1−...原创 2019-05-08 11:25:16 · 1366 阅读 · 0 评论 -
【机器学习】12:支持向量机原理2:软间隔与核函数处理方法
前言:【线性可分数据】的支持向量机的原理在这里,上一篇博客也详细介绍了支持向量机的每一步算法原理,这一篇博客主要介绍针对【线性不可分数据】的处理方法,主要是软间隔与核函数的处理方法。–-----------------------------------------------------------------------------—------------------------––-...原创 2019-07-08 14:56:17 · 907 阅读 · 0 评论