星际导航
(nav.pas/c/cpp/in/out,1s,64MB)
题目描述
sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好。为了方便起见,我们可以认为宇宙是一张有N 个顶点和M 条边的带权无向图,顶点表示各个星系,两个星系之间有边就表示两个星系之间可以直航,而边权则是航行的危险程度。
sideman 现在想把危险程度降到最小,具体地来说,就是对于若干个询问(A, B),sideman 想知道从顶点A 航行到顶点B 所经过的最危险的边的危险程度值最小可能是多少。作为sideman 的同学,你们要帮助sideman 返回家园,兼享受安全美妙的宇宙航行。所以这个任务就交给你了。
输入格式
第一行包含两个正整数N 和M,表示点数和边数。
之后 M 行,每行三个整数A,B 和L,表示顶点A 和B 之间有一条边长为L 的边。顶点从1 开始标号。
下面一行包含一个正整数 Q,表示询问的数目。
之后 Q 行,每行两个整数A 和B,表示询问A 和B 之间最危险的边危险程度的可能最小值。
输出格式
对于每个询问, 在单独的一行内输出结果。如果两个顶点之间不可达, 输出 impossible 。
样例
in:
4 5
1 2 5
1 3 2
2 3 11
2 4 6
3 4 4
3
2 3
1 4
1 2
out:
5
4
5
数据范围与约定
对于40% 的数据,满足N≤1000,M≤3000,Q≤1000。
对于 80% 的数据,满足N≤10000,M≤10 5 ,Q≤1000。
对于 100% 的数据,满足N≤10 5 ,M≤3×10 5 ,Q≤10 5 ,L≤10 9 。数据不保证没有重边和自环。
第一次写博客啊
考试的时候有一点思路,无奈LCA写不出来。用暴力加二分结果第一个点要跑98秒。。。。
正解是Kruskal+LCA求最大边权最小
借助Kruskal,把森林中每一棵树的最小生成树求出来,然后就可以在最小生成树上搞。LCA这里采用倍增,在预处理的过程中把danger[i][k]与anc[i][k]一同处理,为i点到距i点2^k距离的最大边权与祖先节点求出,LCA倍增时不断更新ans(路上最大边权)即可。
要判断是不是impossible十分简单,Kruskal中一棵树已经在一个集合内,看两个点在不在一个集合内就能看出来。
另:和NOIP2013提高组DAY1几乎完全一样,本题是最大边权最小,那一题时最小边权最大。
下面上代码
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MAX(a,b) a>b?a:b
using namespace std;
int n,m,fa[500000],khead[500000],head[500000],edge_num,t_num,deep[100009],anc[100009][21];
int danger[100009][21],kruedge_num,q;
struct E{
int next,to,value,from;
}edge[500000],kruedge[500000];
inline void Swap(int &a,int &b){
int t=a;
a=b;b=t;
}
bool cmp(const E &x,const E &y){
return x.value<y.value;
}
int Find(int x){
if(fa[x]!=x) return fa[x]=Find(fa[x]);
return x;
}
inline int Read(){
int x=0,flag=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') flag=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*flag;
}
void addedge(int x,int y,int z){
edge[++edge_num].next=head[x];
edge[edge_num].from=x;
edge[edge_num].to=y;
edge[edge_num].value=z;
head[x]=edge_num;
}
void addedgekru(int x,int y,int z){
kruedge[++kruedge_num].next=khead[x];
kruedge[kruedge_num].from=x;
kruedge[kruedge_num].to=y;
kruedge[kruedge_num].value=z;
khead[x]=kruedge_num;
}
void Kruskal(){
sort(edge+1,edge+m+1,cmp);
int i,k=0;
for(i=1;i<=n;i++){
fa[i]=i;
}
for(i=1;i<=m;i++){
int a=edge[i].from,b=edge[i].to,v=edge[i].value;
int aa=Find(a),bb=Find(b);
if(aa!=bb){
fa[aa]=bb;
addedgekru(a,b,v);
addedgekru(b,a,v);
k++;
if(k==n-1) return;
}
}
}
void DFS(int x){
int i;
for(i=khead[x];i;i=kruedge[i].next){
if(kruedge[i].to==anc[x][0]) continue;
anc[kruedge[i].to][0]=x;
deep[kruedge[i].to]=deep[x]+1;
danger[kruedge[i].to][0]=kruedge[i].value;
DFS(kruedge[i].to);
}
}
void PRE(){
int i,j;
for(i=1;i<=n;i++){
if(!anc[i][0]){
deep[i]=1;
DFS(i);
}
}
for(j=1;(1<<j)<=n;j++){
for(i=1;i<=n;i++){
if(anc[i][j-1]){
anc[i][j]=anc[anc[i][j-1]][j-1];
danger[i][j]=MAX(danger[i][j-1],danger[anc[i][j-1]][j-1]);
}
}
}
}
int LCA(int x,int y){
int ans=0;
if(deep[x]<deep[y]) Swap(x,y);
int i;
int maxlog=floor(log(n)/log(2));
for(i=maxlog;i>=0;i--){
if(deep[x]-(1<<i)>=deep[y]){
ans=MAX(ans,danger[x][i]);
x=anc[x][i];
}
}
if(x==y) return ans;
for(i=maxlog;i>=0;i--){
if(anc[x][i] && anc[x][i]!=anc[y][i]){
ans=MAX(ans,danger[x][i]);ans=MAX(ans,danger[y][i]);
x=anc[x][i];y=anc[y][i];
}
}
ans=MAX(ans,danger[x][0]);ans=MAX(ans,danger[y][0]);
return ans;
}
int main(){
freopen("nav.in","r",stdin);
freopen("nav.out","w",stdout);
n=Read();m=Read();
int i;
for(i=1;i<=m;i++){
int a=Read(),b=Read(),c=Read();
addedge(a,b,c);
//addedge(b,a,c);
}
Kruskal();
PRE();
q=Read();
for(i=1;i<=q;i++){
int a=Read(),b=Read();
int aa=Find(a),bb=Find(b);
if(aa!=bb) printf("impossible\n");
else printf("%d\n",LCA(a,b));
}
return 0;
}