树状数组求逆序对

逆序对

设 A 为一个有 n 个数字的有序集 (n>1),其中所有数字各不相同。
如果存在正整数 i, j 使得 1 ≤ i < j ≤ n 而且 A[i] > A[j],则 <A[i], A[j]> 这个有序对称为 A 的一个逆序对,也称作逆序数。

树状数组

树状数组(Binary Indexed Tree(BIT), Fenwick Tree)是一个查询和修改复杂度都为log(n)的数据结构。主要用于查询任意两位之间的所有元素之和,但是每次只能修改一个元素的值;经过简单修改可以在log(n)的复杂度下进行范围修改,但是这时只能查询其中一个元素的值(如果加入多个辅助数组则可以实现区间修改与区间查询)。

经过好长时间查找,终于明白这是怎么做到的

可以参见这里

和这里

其中的离散化说白了就是按大小重新标个号;以"和这里"链接为例
将数列 9 1 0 5 4 离散
出现顺序12345
数值大小91054
然后sort一下
出现顺序32541
数值大小01459
然后重标号
出现顺序32541
数值大小(顺序)12345
离散到数组里就成了aa[3]=1,aa[2]=2,aa[5]=3,aa[4]=4,aa[1]=5.

然后NOIP2013 DAY1 T2 就出来了:用离散后的第一列火柴给离散后的第二列火柴标号,具体过程略,样例效果就是这样的:
第一列1234
第二列2134
数组aa={0,2,1,3,4,0<repeats ... times>}

NOIP2013 match.cpp


#include<cstdio>
#include<iostream>
#include<algorithm>
#define lowbit(x) (x&(-x))
#define mod 99999997
using namespace std;

int n;
long long ans;
struct N{
    int num,pos;
}a[200000],b[200000];
int tree[200000];
int aa[200000];

bool cmp(const N &x,const N &y){
    return x.num<y.num;
}

void change(int loc,int num){
    int i;
    for(i=loc;i<=n;i+=lowbit(i))
        tree[i]+=num;
}

long long getsum(int loc){
    int i;
    long long res=0;
    for(i=loc;i;i-=lowbit(i))
        res+=tree[i],res%=mod;
    return res;
}

void solve(){
    int i;
    for(i=1;i<=n;i++){
        change(aa[i],1);
        ans+=i-getsum(aa[i]);
        ans%=mod;
    }
    cout<<ans;
}

int main(){
    freopen("match.in","r",stdin);
    freopen("match.out","w",stdout);
    scanf("%d",&n);
    int i;
    for(i=1;i<=n;i++){
        scanf("%d",&a[i].num);
        a[i].pos=i;
    }
    for(i=1;i<=n;i++){
        scanf("%d",&b[i].num);
        b[i].pos=i;
    }
    sort(a+1,a+n+1,cmp);
    sort(b+1,b+n+1,cmp);
    for(i=1;i<=n;i++){
        aa[a[i].pos]=b[i].pos;
    }
    solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值