二叉树
( binary .cpp/c/pas)
【问题描述】
二叉排序树或者是一棵空树,或者是具有下列性质的二叉树:
(1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值;
(2)若右子树不空,则右子树上所有结点的值均大于它的根结点的值;
(3)左、右子树也分别为二叉排序树;
(4)没有键值相等的结点。
完全二叉树:只有最下面的两层结点度能够小于2,并且最下面一层的结点都集中在该层最左边的若干位置的二叉树。
上图中,(a)和(b)是完全二叉树,(c)和(d)是非完全二叉树。
给出N个数,且这N个数构成1至N的排列。现在需要你按顺序构建一棵二叉排序树,并按照层次遍历的方式输出它,然后判断它是否是一棵完全二叉树。
【输入格式】
输入文件名为binary.in。
输入文件包含两行。第一行为一个正整数N;第二行为1至N的排列。
【输出格式】
输出文件名为binary.out。
输出文件包含两行。第一行为构建出的二叉排序树的层次遍历;第二行判断是否是完全二叉树:若是输出yes,否则输出no。
【输入输出样例1 1 】
in:
10
7 9 8 4 6 2 10 1 5 3
out:
7 4 9 2 6 8 10 1 3 5
yes
【输入输出样例2 2 】
in:
5
3 4 5 2 1
out:
3 2 4 1 5
no
【数据规模与约定】
对于100%的数据,1≤N≤20。
当时做这道题脑残没写出来时候发现超级简单。。。。
就是每次从根节点开始比较插入一个数
由于这里存树用的是一个数组,从1到最后一个点中,如果有未填数的点就说明不是一棵完全二叉树
#include<cstdio>
#define MAX(x,y) x>y?x:y
using namespace std;
int n,num,maxn;
int tree[500000];
bool b;
void Add(int x){
int now=1;
while(1){
if(x>tree[now]){
now<<=1;
now++;
if(!tree[now]){
tree[now]=x;
break;
}
}
else{
now<<=1;
if(!tree[now]){
tree[now]=x;
break;
}
}
}
maxn=MAX(maxn,now);
}
void solve(){
int i;
for(i=1;i<=maxn;i++){
if(!tree[i]){
b=1;
}
else
printf("%d ",tree[i]);
}
if(!b) printf("\nyes");
else printf("\nno");
}
int main(){
freopen("binary.in","r",stdin);
freopen("binary.out","w",stdout);
int i;
scanf("%d",&n);
for(i=1;i<=n;i++){
scanf("%d",&num);
if(i==1){
tree[1]=num;continue;
}
Add(num);
}
solve();
return 0;
}