线索二叉树的背景
在聊线索二叉树之前,先来看看单向链表:
单向链表的每一个结点都有指向下一个结点的指针域,却没有指向上一个结点的指针,给使用带来不方便,为此双向链表应运而生 。
在二叉树中想知道某个结点的前驱结点是谁的时候,就得重新遍历一遍, 浪费时间。
所以,有人创建了一棵树,在进行第一遍某种遍历方式的时候,就”顺便“ 记录一下某些结点的前驱结点和后继结点 。
我们知道二叉树有4种遍历, 前/中/后序遍历和层序遍历, 前中后遍历的是以先访问根节点,还是中间访问,还是最后访问来作区别。
而在每棵树都有叶结点,在中序遍历中如果刚好利用上这些叶结点标记一下,就可以减少空间浪费 ,也可以快速访问到某些结点。
【补充说明】
个人认为对于初学者来说,最容易漏掉的是头结点的处理, 因为
#if 0
程序目的,建立 一棵二叉搜索树,并初始化, 用三种遍历方法遍历一遍
然后再实现这棵树的线索化
@建树
@树的初始化(写一个根节点)
@左子树比右子树的要小
#endif
#include <stdio.h>
#include <string.h>
#include<stdlib.h>
#define Maxsize 8
typedef int element;
typedef struct BinTree
{
struct BinTree* left;
struct BinTree* right;
element data;
int ltag;
int rtag; //在遍历时标记
}BT;
BT bt ,*b;
BT* pre = NULL; //始终指向刚刚访问过的结点
void InorderThreading(BT* p, BT* Node);
BT* BuildTree(BT* Node, int a[]);
BT* InitNode(BT* New, element x);
BT* InsertNode(BT* Node, element x);
void midprintTree(BT* Node);
void midTree(BT* Node);
void preTree(BT* Node);
void FrontTree(BT* Node);
int main()
{
int Tree[Maxsize] = {4,3,2,6,10,5,4,11};
b = InitNode(b, Tree[0]);
b=BuildTree(b, Tree);
preTree(b);
printf("\n");
midprintTree(b);
printf("\n");
InorderThreading(&bt,b);
}
//树或称为根结点的初始化: 初始化根节点 ,返回根节点
BT *InitNode(BT* Node, element x)
{
Node = (BT*)malloc(sizeof(BT));
Node->data = x;
Node->right = Node->left = NULL;
Node->ltag = Node->rtag = 0;
return Node;
}
//建树:入口参数: 树的根节点
//将所有数据挂到树上,利用的是插入算法
BT* BuildTree(BT* Node, int a[])
{
int i = 1, x = 0;
for (; i < Maxsize; i++)
{
x = a[i];
Node = InsertNode(Node, x);
}
return Node;
}
//插入结点
//入口参数:这棵树的根节点
//返回值: 插好元素的树的根节点
BT* InsertNode(BT* Node, element x)
{
if (Node == NULL)
{
Node = InitNode(Node, x);
}
else
{
if(Node->data > x)
{
Node->left = InsertNode(Node->left, x);
}
else
{
Node->right = InsertNode(Node->right, x);
}
}
return Node;
}
//==================建树完成==========================
void preTree(BT* Node)
{
if (Node == NULL)
return;
printf("%3d", Node->data);
preTree(Node->left);
preTree(Node->right);
}
//在中序遍历中修改好指针,就是最后一棵子树的左右指针指向他们前驱后继指针
void midTree(BT* Node)
{
if (Node == NULL)
{
return;
}
midTree(Node->left);
// 如果该结点没有左孩子,设置ltag为前驱线索
if (Node->left == NULL)
{
Node->ltag = 1;
Node->left = pre;
}
//当走到当前结点的下一个结点的时候,就可以将当前结点添加下一个结点作为后继结点(妙啊)
if (pre->right == NULL)
{
pre->rtag = 1;
pre->right = Node;
}
pre = Node;//在程序最开始,要设置一个头结点,否则前驱结点就是空指针,会引起内存保护,程序异常
midTree(Node->right);
}
//开辟一个头结点 给pre一个空间 ,防止内存保护
void InorderThreading(BT* p ,BT * Node )
{
p = (BT*)malloc(sizeof(BT));
p->ltag = 0;
p->rtag = 1;
p->right = p; //先指自己 //右边作为线索 ,让左右最后一个指向它
if (Node == NULL)//空树
{
p->left = p;
}
else
{
p->left = Node; //指向根节点
pre = p; //给定义好的全局变量头结点
midTree(Node);
pre->right = p;
pre->rtag = 1;
p->right = pre;
}
}
void FrontTree(BT* Node)
{
if (Node == NULL)
return;
FrontTree(Node->left);
FrontTree(Node->right);
printf("%3d", Node->data);
}
void midprintTree(BT* Node)
{
if (Node == NULL)
return;
midprintTree(Node->left);
printf("%3d", Node->data);
midprintTree(Node->right);
}