P4655 [CEOI2017] Building Bridges(数据结构优化李超线段树)

                                        P4655 [CEOI2017] Building Bridges

[CEOI2017] Building Bridges - 洛谷

 思路:我们能够想到这是一个线性dp,然后对于f[i],我们可以从1~i-1找到一个中间点,然后进行转移转移方程为f[i]=min(f[j]+(hi-hj)^2+sum[i-1]-sum[j]),然后我们经过整理能够得到

f[i]=hi^2+sum[i-1]+min(f[j]+-2*hi*hj+hj^2-sum[j]),然后我们可以另ai=-2*hj,bi=fj]+hj^2-sum[j],然后能够得到一个y=ai*hi+bi,一次方程,即求为hi时的最小值,所以我们可以用李超线段树维护,首先放上第一条线段,然后每次找到能够产生y最小的id,然后求出目前的f[i],那么将当前能够产生的线段加到线段树中,在遍历完之后f[n]为答案

// Problem: P4655 [CEOI2017] Building Bridges
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P4655
// Memory Limit: 512 MB
// Time Limit: 2000 ms

#include<iostream>
#include<cstring>
#include<string>
#include<sstream>
#include<cmath>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<map>
#include<stack>
#include<vector> 
#include<set>
#include<unordered_map>
#include<ctime>
#include<cstdlib>
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef double db;
typedef pair<int,int> PII;
typedef pair<int,pair<int,int> > PIII;
const double eps=1e-7;
const int N=2e5+7 ,M=1e6+100, INF=0x3f3f3f3f,mod=1e9+7;
const long long int llINF=0x3f3f3f3f3f3f3f3f;
inline ll read() {ll x=0,f=1;char c=getchar();while(c<'0'||c>'9') {if(c=='-') f=-1;c=getchar();}
while(c>='0'&&c<='9') {x=(ll)x*10+c-'0';c=getchar();} return x*f;}
void stin() {freopen("in_put.txt","r",stdin);freopen("my_out_put.txt","w",stdout);}
bool cmp0(int a,int b) {return a>b;}
template<typename T> T gcd(T a,T b) {return b==0?a:gcd(b,a%b);}
template<typename T> T lcm(T a,T b) {return a*b/gcd(a,b);}
void hack() {printf("\n----------------------------------\n");}

int T,hackT;
int n,m,k;
int w[N];
int h[N];
ll sum[N];
pair<ll,ll> edge[N];
struct Node{
	int l,r;
	int id;
};

Node tr[M*4];
ll f[N];

void build(int u,int l,int r) {
	if(l==r) tr[u]={l,r};
	else {
		tr[u]={l,r};
		int mid=l+r>>1;
		build(u<<1,l,mid),build(u<<1|1,mid+1,r);
	}
}

ll get(int id,int x) {
	return edge[id].fi*(ll)x+edge[id].se;
}

void modify(int u,int l,int r,int id) {
	if(tr[u].l>=l&&tr[u].r<=r) {
		if(tr[u].id==0) tr[u].id=id;
		else {
			int mid=tr[u].l+tr[u].r>>1;
			ll yuanl=get(tr[u].id,tr[u].l),yuanmid=get(tr[u].id,mid),yuanr=get(tr[u].id,tr[u].r);
			ll xinl=get(id,tr[u].l),xinmid=get(id,mid),xinr=get(id,tr[u].r);
			
			if(yuanl<xinl&&yuanr<xinr) ;
			else if(xinl<=yuanl&&xinr<=yuanr) tr[u].id=id;
			else {
				if(yuanl<=xinl&&yuanmid<=xinmid) modify(u<<1|1,l,r,id);
				else if(yuanl<=xinl&&yuanmid>=xinmid) modify(u<<1,l,r,tr[u].id),tr[u].id=id;
				else if(yuanr<=xinr&&yuanmid<=xinmid) modify(u<<1,l,r,id);
				else if(yuanr<=xinr&&yuanmid>=xinmid) modify(u<<1|1,l,r,tr[u].id),tr[u].id=id;
			}
		}
	}else {
		int mid=tr[u].l+tr[u].r>>1;
		if(l<=mid) modify(u<<1,l,r,id);
		if(r>mid) modify(u<<1|1,l,r,id);
	}
}

int change(int a,int b,int x) {
	if(get(a,x)<get(b,x)) return a;
	else return b;
}

int query(int u,int hx) {
	if(tr[u].l==hx&&tr[u].r==hx) return tr[u].id;
	else {
		int mid=tr[u].l+tr[u].r>>1;
		int res=tr[u].id;
		
		if(hx<=mid) {
			int q=query(u<<1,hx);
			if(res==0&&q!=0) return q;
			else if(res!=0&&q==0) return res;
			else if(res!=0&&q!=0) return change(res,q,hx);
			else return 0;
		}else {
			int q=query(u<<1|1,hx);
			if(res==0&&q!=0) return q;
			else if(res!=0&&q==0) return res;
			else if(res!=0&&q!=0) return change(res,q,hx);
			else return 0;
		}
	}
} 

void solve() {
	n=read();
	
	for(int i=1;i<=n;i++) h[i]=read();
	for(int i=1;i<=n;i++) w[i]=read();
	
	for(int i=1;i<=n;i++) sum[i]=sum[i-1]+w[i];
	
	build(1,0,1000000);
	edge[1].fi=(-2)*h[1],edge[1].se=(ll)h[1]*h[1]-sum[1];
	modify(1,0,1000000,1);
	edge[0].fi=INF,edge[0].se=INF;
	for(int i=2;i<=n;i++) {
		int id=query(1,h[i]);
		f[i]=(ll)h[i]*h[i]+sum[i-1]+f[id]-(ll)2*h[i]*h[id]+(ll)h[id]*h[id]-sum[id];
		ll ai=(-2)*h[i],bi=f[i]+(ll)h[i]*h[i]-sum[i];
		edge[i]={ai,bi};
		modify(1,0,1000000,i);
	}
	
	printf("%lld\n",f[n]);
}   

int main() {
    // init();
    // stin();

    // scanf("%d",&T);
    T=1; 
    while(T--) hackT++,solve();
    
    return 0;       
}          

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值