johnson全源最短路模板

文章介绍了如何使用Johnson算法处理包含负权边的图的全源最短路径问题。首先通过SPFA判断是否存在负环,然后调整边权重并进行Dijkstra算法,最终计算任意两点间的最短距离。该算法在洛谷平台上作为模板问题出现。
摘要由CSDN通过智能技术生成

1. 如果没有负权边,本质上是对每个顶点做一次dijkstra,时间复杂度维nmlog n

2. 如果存在负权边,需要先设立0号点为超级原点,往每个点连长度是0的边,然后先用spfa跑一遍判断有没有负环,同时记录0号到任意店的距离

3. 然后将所有的边的边权更改为w[i]+d[i]-d[e[i]],然后对n个点跑dijkstra

4. 最后在计算任意两个点之间的距离时需要加上d[e[i]]-d[i],这样得到的就是任意点之间的距离

总体时间复杂度时nmlog n

【模板】Johnson 全源最短路 - 洛谷

// Problem: P5905 【模板】Johnson 全源最短路
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P5905
// Memory Limit: 128 MB
// Time Limit: 1000 ms

#include<iostream>
#include<cstring>
#include<string>
#include<sstream>
#include<cmath>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<map>
#include<stack>
#include<vector> 
#include<set>
#include<unordered_map>
#include<ctime>
#include<cstdlib>
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef double db;
typedef pair<int,int> PII;
typedef pair<int,pair<int,int> > PIII;
const double eps=1e-7;
const int N=5e5+7 ,M=5e5+7, INF=0x3f3f3f3f,mod=1e9+7;
const long long int llINF=0x3f3f3f3f3f3f3f3f;
inline ll read() {ll x=0,f=1;char c=getchar();while(c<'0'||c>'9') {if(c=='-') f=-1;c=getchar();}
while(c>='0'&&c<='9') {x=(ll)x*10+c-'0';c=getchar();} return x*f;}
inline void write(ll x) {if(x < 0) {putchar('-'); x = -x;}if(x >= 10) write(x / 10);putchar(x % 10 + '0');}
inline void write(ll x,char ch) {write(x);putchar(ch);}
void stin() {freopen("in_put.txt","r",stdin);freopen("my_out_put.txt","w",stdout);}
bool cmp0(int a,int b) {return a>b;}
template<typename T> T gcd(T a,T b) {return b==0?a:gcd(b,a%b);}
template<typename T> T lcm(T a,T b) {return a*b/gcd(a,b);}
void hack() {printf("\n----------------------------------\n");}

int T,hackT;
int n,m,k;
int h[N],e[M],ne[M],w[M],idx;
bool st[3010];
int d[N];
int cnt[N];
int dist[3010];

void add(int a,int b,int c) {
	e[idx]=b,ne[idx]=h[a],w[idx]=c,h[a]=idx++;
}

bool spfa(int u) {
	memset(d,0x3f,sizeof d);
	d[u]=0;
	
	queue<int> q;
	q.push(u);
	st[u]=true;
	cnt[u]=-1;
	while(q.size()) {
		auto t=q.front();
		q.pop();
		st[t]=false;
		
		for(int i=h[t];i!=-1;i=ne[i]) {
			int j=e[i];
			
			if(d[j]>d[t]+w[i]) {
				d[j]=d[t]+w[i];
				cnt[j]=cnt[t]+1;
				if(cnt[j]>=n) return false;
				if(!st[j]) {
					st[j]=true;
					q.push(j);
				}
			}
		}
	}
	
	return true;
}

void dijkstra(int u) {
	memset(st,false,sizeof st);
	memset(dist,0x3f,sizeof dist);
	
	priority_queue<pair<ll,int>,vector<pair<ll,int> > ,greater<pair<ll,int> > > q;
	dist[u]=0;
	q.push({dist[u],u});
	
	while(q.size()) {
		auto it=q.top();
		q.pop();
		
		int ver=it.se;
		if(st[ver]) continue;
		st[ver]=true;
		
		for(int i=h[ver];i!=-1;i=ne[i]) {
			int j=e[i];
			
			if(dist[j]>dist[ver]+w[i]) {
				dist[j]=dist[ver]+w[i];
				q.push({dist[j],j});
			}
		}
	}
}

void solve() {
	n=read(),m=read();
	
	memset(h,-1,sizeof h);
	while(m--) {
		int a=read(),b=read(),c=read();
		add(a,b,c);
	}
	
	for(int i=1;i<=n;i++) add(0,i,0);
	if(!spfa(0)) {
		printf("-1\n");
		return ;
	}
	
	for(int i=1;i<=n;i++) {
		for(int j=h[i];j!=-1;j=ne[j]) {
			int a=i,b=e[j];
			w[j]+=d[a]-d[b];
		}
	}
	
	for(int i=1;i<=n;i++) {
		dijkstra(i);
		ll res=0;	
		for(int j=1;j<=n;j++) {
			if(dist[j]==INF) res=res+(ll)j*1000000000;
			else res=res+(ll)j*(dist[j]+d[j]-d[i]);
		}
		printf("%lld\n",res);
	}
}   

int main() {
    // init();
    // stin();

    // scanf("%d",&T);
    T=1; 
    while(T--) hackT++,solve();
    
    return 0;       
}          

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值