“FinGPT: Enhancing Sentiment-Based Stock Movement Prediction with Dissemination-Aware and Context-Enriched LLMs”
论文地址:https://arxiv.org/pdf/2412.10823
摘要
金融情感分析对于解读新闻如何影响股价具有关键作用,大型语言模型(LLM)由于其强大的文本分析能力而被广泛应用于这一领域。然而,现有的模型往往侧重于新闻内容本身,而忽略了新闻的传播广度,这在一定程度上削弱了对短期股价变动预测的精确性。此外,当前的方法通常缺乏足够的背景信息和清晰的指导方针,这也制约了LLM解析能力的充分发挥。
本文介绍了一种基于数据驱动的新方法,旨在通过结合新闻的传播范围、上下文信息以及具体的指令来增强LLM对股票价格趋势的情感分析预测。该方法通过对相关公司新闻进行聚类分析以评估其影响程度,并提供更加丰富的提示信息。同时,我们建立了一个专门用于调整模型参数的数据集,用以优化LLM的表现。实验结果表明,这种方法能够使预测准确性得到大约8%的提升。
简介
金融市场对新闻报道和社交媒体动态极为敏感,情感分析已成为现代金融预测中的重要工具。传统的情感分类方法通常仅将情感划分为正面、负面和中性三类,而大型语言模型(LLMs)的引入则显著提升了情感分析的精度和深度解析能力。不过,现有的多数方法主要集中在单个新闻条目的内容上,忽略了新闻传播的广泛性和相关背景信息,这在一定程度上限制了LLMs的表现。
本文介绍了一种创新的方法,通过聚类与公司相关的新闻报道来评估其传播范围及其产生的影响,从而强化短期股价预测的准确性。研究结果表明,这种方法能够使预测的准确率提升8%。该方法通过整合更全面的上下文数据,为LLMs提供了更丰富的信息基础,进而改善了对市场情绪的理解和预测。
01相关工作
利用文本和新闻进行股票价格预测并非新概念,已有研究展示了如何使用社交媒体帖子和历史数据来预估市场价格。大型语言模型(LLMs)能够深入解析金融文本,识别新闻资料中的复杂关联,从而提高股票价格预