基于金融新闻的大型语言模型强化学习在投资组合管理中的应用

“Financial News-Driven LLM Reinforcement Learning for Portfolio Management”

论文地址:https://arxiv.org/pdf/2411.11059

摘要

本研究探索了如何通过将大语言模型(LLM)支持的情感分析融入强化学习(RL)中,以实现金融交易动态策略的优化。针对苹果公司股票(AAPL)和ING Corporate Leaders Trust Series B基金(LEXCX)的投资组合进行了实验验证。结果显示,加入了情感分析的RL模型在资产净值和累计收益方面均表现更优。尤其是在基金投资组合测试中,该增强模型的表现也超过了采用买入并持有策略的LEXCX。这些发现表明,引入定性市场情绪指标能够提升决策效率,有助于缩小纯量化与质化金融交易策略间的差异。

简介

强化学习(RL)在金融交易领域日益受到关注,因其能够通过序列决策优化交易策略,但在考量如市场情绪等定性因素方面存在不足。本研究致力于通过将情感分析与RL相结合来弥补这一局限,运用大型语言模型(LLMs)从金融新闻中提取情感信息,并将其转化为适合RL模型处理的结构化数据。目的在于验证情感分析可以提升RL算法在交易和投资组合管理中的效能。首先开发了一个基于苹果公司(AAPL)股票的基线RL交易算法,并与集成了情感输入的版本进行了对比分析。接着,研究扩展到包含ING Corporate Leaders Trust Series B(LEXCX)在内的多元化投资组合,比较了结合情感分析的RL模型相对于传统RL模型以及原始LEXCX投资组合的表现差异。

01相关研究

强化学习(RL)在金融交易中展现出强大的能力,特别适用于动态市场条件下的策略优化,并已在单一股票交易和多元化投资组合管理方面取得了成功。诸如深度Q学习和策略梯度等方法已被用于模拟实际交易环境,但这些方法大多仅依赖于价格和成交量数据,未能充分利用市场信号和情绪变化。通过量化来自新闻、社交媒体及分析师报告中的情绪信息,情绪分析可以增强交易策略的有效性,有助于预测短期价格波动并反映市场波动性。利用GPT和BERT等大型语言模型(LLMs),情绪分析的准确性得到了显著提升,能够有效提取与金融相关的特定情境下的情绪信息。然而,目前在学术文献中鲜有研究将基于LLM的情绪分析整合进RL模型中应用于投资组合管理。本研究旨在填补这一研究空白,探索如何通过情绪分析提升RL模型在投资决策中的表现。

02方法

交易强化学习算法

算法目标:

强化学习(RL)交易算法旨在平衡灵活性、优化奖励和控制交易成本,以模拟真实的交易决策过程。

环境兼容性:

使用自定义环境设计,与OpenAI Gym兼容。该环境明确区分了动作空间和观察空间。

动作空间定义:

  • 动作类型:采用0到2的标量表示,其中小于1代表买入操作,1至2之间为卖出操作,等于1则是持有。
  • 动作量:通过一个0到0.5的标量来指定,表示交易的比例。
  • 动态调整机制:一旦选定动作,算法根据当前账户余额和持股情况计算买卖数量,以此动态调整市场暴露度。

奖励结构组成:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值