POJ1236 Network of Schools 强连通+缩点

原创 2015年07月09日 17:49:51

题目链接:

poj1236




题意:

给出一幅有向图,给出图中所有的边。问:

1.要遍历完图的所有顶点,需要遍历多少次(可以从不同起点)

2.要想只遍历一次,经过图中所有顶点(强连通)最少 需要增加多少条边



题解思路:

首先就是缩点重新建图

对于问题1:

要遍历整个图,只需要从图的所有起点开始遍历

这里图中的起点就是入度为0的点,起点个数即为遍历次数。

对于问题2:

要想使原图成为强连通图

需要保证图中没有入度为0或出度为0的顶点;

而每增加一条边 的  最优连接策略 是   从一个出度为0的顶点到一个入度为0的顶点

这样 需要增加的最少边数即为   入度为0的顶点个数 和   出度为0的顶点个数   之间的最大值


另外需要注意图中只有一个强连通分量的特殊情况(重建图后只有一个顶点):

需要的遍历次数为1

需要的最少边数为0


代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 105
using namespace std;
struct node{
    int to,next;
}edge[maxn*maxn];
int head[maxn];
int s;

int dfn[maxn],low[maxn],num;

int insta[maxn],sta[maxn],top;

int belong[maxn],block;
void init()
{
    memset(head,-1,sizeof(head));
    memset(dfn,0,sizeof(dfn));
    memset(insta,0,sizeof(insta));
    memset(belong,0,sizeof(belong));
    top=num=s=block=0;
}

void Tarjan(int u,int pre)
{
    dfn[u]=low[u]=++num;
    insta[u]=1;
    sta[top++]=u;
    for(int i=head[u];i!=-1;i=edge[i].next)
    {
        int v=edge[i].to;
        if(!dfn[v])
        {
            Tarjan(v,u);
            low[u]=min(low[u],low[v]);
        }
        else if(insta[v])
            low[u]=min(low[u],dfn[v]);
    }
    if(low[u]==dfn[u])
    {
        int d=-1;
        block++;
        while(d!=u)
        {
            d=sta[--top];
            insta[d]=0;
            belong[d]=block;
        }
    }
}

void rebuild(int n)
{
    int in[maxn]={0};
    int out[maxn]={0};
    int u,v;
    for(int i=1;i<=n;i++)
    {
        u=belong[i];
        for(int j=head[i];j!=-1;j=edge[j].next)
        {
            v=edge[j].to;
            v=belong[v];
            if(u!=v)
            {
                in[v]++;
                out[u]++;
            }
        }
    }
    int s1=0,s2=0;
    for(int i=1;i<=block;i++)
    {
        if(!in[i])
            s1++;
        if(!out[i])
            s2++;
    }
    if(s1==0)
        cout<<1<<endl;
    else
        cout<<s1<<endl;
    if(block==1)
        cout<<0<<endl;
    else
        cout<<max(s1,s2)<<endl;
}

int main()
{
//    freopen("in.txt","r",stdin);
    int n,a,b;
    while(~scanf("%d",&n))
    {
        init();
        for(int i=1;i<=n;i++)
        {
            while(scanf("%d",&a)&&a)
            {
                edge[s]={a,head[i]};
                head[i]=s++;
            }
        }
        for(int i=1;i<=n;i++)
            if(!dfn[i])
                Tarjan(i,-1);
        rebuild(n);
    }
    return 0;
}




版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ 1236 Network of Schools HDU 3836 Equivalent Sets 强连通分量+缩点 tarjan or kosaraju

1,POJ 1236 有一些学校连接到一个计算机网络,这些学校之间达成了一个协议:每个学校维护着一个学校列表,它向学校列表中的学校发布软件。注意,如果学校B在学校A的列表中,则A不一定在B的列表中。...

POJ-1236 Network of Schools(强连通+缩点)

A - Network of Schools Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu...

poj-1236 Network Of Schools【强连通缩点】

/*问题A:选择几个点作为起点发送软件,能最少选择几个起点保证所有学校都能收到 问题B:添几条边能使任意一个点作为起点发送软件,让所有学校都能收到 解决思路:有向图中强连通分量中任意两点两两可达,所以...

POJ 1236 Network of Schools(强连通 Tarjan+缩点)

POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意:  给定一张有向图,问最少选择几个点能遍历全图,以及...
  • hcbbt
  • hcbbt
  • 2014年07月30日 15:45
  • 955

POJ 1236 Network of Schools(强连通分量,缩点)

kuangbin老师讲的非常好。。直接拷他的思路吧。 强连通分量缩点求入度为0的个数和出度为0的分量个数 题目大意:N(2各学校之间有单向的网络,每个学校得到一套软件后,可以通过单向网络向周边的学校...
  • CillyB
  • CillyB
  • 2017年04月25日 15:17
  • 193

POJ-1236-Network of Schools【强连通分量】【缩点】

POJ-1236-Network of Schools

POJ 1236 Network of Schools【强连通分量分解&&缩点||tarjan&&缩点】

Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1423...
  • wyjwyl
  • wyjwyl
  • 2016年03月01日 16:21
  • 176

poj1236Network of Schools_强连通分量缩点(tarjan算法解决)

poj1236题目链接 题目大意:有N个学校,从每个学校都能从一个单向网络到另外一个学校,两个问题 1:初始至少需要向多少个学校发放软件,使得网络内所有的学校最终都能得到软件。 2:至少需要添加...

Network of Schools POJ - 1236 tarjan强连通分量缩点

A number of schools are connected to a computer network. Agreements have been developed among those ...

poj 1236 Network of Schools(强连通缩点)

题目链接
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ1236 Network of Schools 强连通+缩点
举报原因:
原因补充:

(最多只允许输入30个字)