关闭

bzoj3771 Triple

标签: bzojFFT容斥原理
2600人阅读 评论(0) 收藏 举报
分类:

3771: Triple

Time Limit: 20 Sec  Memory Limit: 64 MB
Submit: 313  Solved: 174
[Submit][Status][Discuss]

Description

我们讲一个悲伤的故事。
从前有一个贫穷的樵夫在河边砍柴。
这时候河里出现了一个水神,夺过了他的斧头,说:
“这把斧头,是不是你的?”
樵夫一看:“是啊是啊!”
水神把斧头扔在一边,又拿起一个东西问:
“这把斧头,是不是你的?”
樵夫看不清楚,但又怕真的是自己的斧头,只好又答:“是啊是啊!”
水神又把手上的东西扔在一边,拿起第三个东西问:
“这把斧头,是不是你的?”
樵夫还是看不清楚,但是他觉得再这样下去他就没法砍柴了。
于是他又一次答:“是啊是啊!真的是!”
水神看着他,哈哈大笑道:
“你看看你现在的样子,真是丑陋!”
之后就消失了。
樵夫觉得很坑爹,他今天不仅没有砍到柴,还丢了一把斧头给那个水神。
于是他准备回家换一把斧头。
回家之后他才发现真正坑爹的事情才刚开始。
水神拿着的的确是他的斧头。
但是不一定是他拿出去的那把,还有可能是水神不知道怎么偷偷从他家里拿走的。
换句话说,水神可能拿走了他的一把,两把或者三把斧头。
樵夫觉得今天真是倒霉透了,但不管怎么样日子还得过。
他想统计他的损失。
樵夫的每一把斧头都有一个价值,不同斧头的价值不同。总损失就是丢掉的斧头价值和。
他想对于每个可能的总损失,计算有几种可能的方案。
注意:如果水神拿走了两把斧头a和b,(a,b)和(b,a)视为一种方案。拿走三把斧头时,(a,b,c),(b,c,a),(c,a,b),(c,b,a),(b,a,c),(a,c,b)视为一种方案。

Input

第一行是整数N,表示有N把斧头。
接下来n行升序输入N个数字Ai,表示每把斧头的价值。

Output

若干行,按升序对于所有可能的总损失输出一行x y,x为损失值,y为方案数。

Sample Input

4
4
5
6
7

Sample Output

4 1
5 1
6 1
7 1
9 1
10 1
11 2
12 1
13 1
15 1
16 1
17 1
18 1
样例解释
11有两种方案是4+7和5+6,其他损失值都有唯一方案,例如4=4,5=5,10=4+6,18=5+6+7.

HINT

所有数据满足:Ai<=40000




FFT+容斥原理

听说这个叫母函数?

这里要考虑重复问题,所以要用容斥。

多项式A,对于每一项x,如果存在一个物品的价值v满足x=v,则第x项为1,否则为0。

多项式B,对于每一项x,如果存在一个物品的价值v满足x=2v,则第x项为1,否则为0。

多项式C,对于每一项x,如果存在一个物品的价值v满足x=3v,则第x项为1,否则为0。

然后根据容斥,一个物品方案数是A,两个物品方案数是(A^2-B)/2,三个物品方案数是(A^3-3*A*B+2*C)/6。

所以最终答案ans=A+(A^2-B)/2+(A^3-3*A*B+2*C)/6。

多项式的乘法用FFT做,时间复杂度O(n*logn)。




#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define ll long long
#define maxn 150000
using namespace std;
int n,m,rev[maxn];
const double pi=acos(-1.0);
struct CP
{
	double x,y;
	CP(double xx=0,double yy=0){x=xx;y=yy;}
	friend CP operator +(CP a,CP b){return CP(a.x+b.x,a.y+b.y);}
	friend CP operator -(CP a,CP b){return CP(a.x-b.x,a.y-b.y);}
	friend CP operator *(CP a,CP b){return CP(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
	friend CP operator *(CP a,double k){return CP(a.x*k,a.y*k);}
	friend CP operator /(CP a,double k){return CP(a.x/k,a.y/k);}
}a[maxn],b[maxn],c[maxn],ans[maxn];
inline int read()
{
	int x=0,f=1;char ch=getchar();
	while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
	while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
	return x*f;
}
void FFT(CP *a,int n,int flag)
{
	F(i,0,n-1) if (rev[i]>i) swap(a[i],a[rev[i]]);
	for(int m=2;m<=n;m<<=1)
	{
		int mid=m>>1;
		CP wn(cos(2.0*pi*flag/m),sin(2.0*pi*flag/m));
		for(int i=0;i<n;i+=m)
		{
			CP w(1.0,0);
			F(j,i,i+mid-1)
			{
				CP u=a[j],v=a[j+mid]*w;
				a[j]=u+v;a[j+mid]=u-v;
				w=w*wn;
			}
		}
	}
	if (flag==-1) F(i,0,n-1) a[i].x/=n;
}
int main()
{
	m=131072;
	F(i,1,m-1) rev[i]=(rev[i>>1]>>1)+((i&1)<<16);
	n=read();
	F(i,1,n){int x=read();a[x]=CP(1.0,0);b[x*2]=CP(1.0,0);c[x*3]=CP(1.0,0);}
	FFT(a,m,1);FFT(b,m,1);FFT(c,m,1);
	F(i,0,m-1) ans[i]=a[i]+(a[i]*a[i]-b[i])/2.0+(a[i]*a[i]*a[i]-a[i]*b[i]*3.0+c[i]*2.0)/6.0;//重点理解这个式子 
	FFT(ans,m,-1);
	F(i,0,m-1)
	{
		int x=round(ans[i].x);
		if (x>0) printf("%d %d\n",i,x);
	}
	return 0;
}


0
0
查看评论

BZOJ 3771 Triple FFT+容斥原理

BZOJ 3771 Triple FFT+容斥原理
  • wzq_QwQ
  • wzq_QwQ
  • 2015-09-01 17:29
  • 2263

bzoj 3771: Triple (容斥原理+生成函数+FFT)

题目描述传送门题目大意:有价值不同的n个物件,求从中选取1-3件物品,能组成多少种不同的价值,已经每种价值的方案数。题解容斥原理+生成函数+FFT代码#include<iostream> #include<cstring> #include<algorithm> ...
  • clover_hxy
  • clover_hxy
  • 2017-04-17 20:51
  • 194

bzoj3771 Triple

FFT+容斥原理
  • AaronGZK
  • AaronGZK
  • 2016-06-02 00:02
  • 2600

[BZOJ3771]Triple(FFT+生成函数)

生成函数这东西吧,考场上就算考了ATP估计也不会→_→
  • FromATP
  • FromATP
  • 2017-04-06 21:38
  • 582

BZOJ3771 Triple

这真是个悲伤的故事 第一次看完题我笑了半天23333 还有就是要认真读题,题里说河神会拿一个,两个,或三个斧子,这并不是什么象征意义,而是确实只是会拿一个,两个或者三个…… 这样的话我们把生成函数A搞出来 发现不能A+A^2+A^3直接搞,因为有拿重的 我们设B为把斧子的价值都乘2的生成函...
  • neither_nor
  • neither_nor
  • 2016-05-26 20:07
  • 829

[BZOJ3771][生成函数][FFT][容斥原理]Triple

题意给定n个数,求从其中选1个、2个、3个能得到的权值和的情况及方案数生成函数裸题 刚接触这玩意并不是很能理解,也不是很懂怎么表达……考虑f(i)f(i)表示权值和为i的方案数,那么有f(i)=∑f(j)∗f(i−j)f(i)=\sum f(j)*f({i-j}),为卷积形式, 那么令母函数g(...
  • Coldef
  • Coldef
  • 2017-02-21 20:38
  • 259

[生成函数+容斥+FFT] BZOJ3771: Triple

题意给出n个物品,每个物品有一个价值Ai。可以选一个或两个或三个,求每种可能的总价值的选取方案。 Ai≤40000Ai \le 40000题解题面好有趣…… 考虑构造普通型生成函数A(x),表示取一个的方案。 答案肯定不能直接A3+A2+AA^3+A^2+A,因为一个物品可能被取了多次,考虑如...
  • CHHNZ
  • CHHNZ
  • 2017-07-20 13:39
  • 216

BZOJ3771: Triple

我们写出斧头的生成函数F(x)F(x) 题目要求用1把、2把、3把斧头能拼出的方案数,不考虑顺序 那就要去掉非法情况和重复情况 所以就不能写成:F(x)+F2(x)+F3(x)F(x)+F^2(x)+F^3(x) 对于F2(x)F^2(x),他会有一把斧头用2次的情况 对于F3(x)F^3...
  • L_0_Forever_LF
  • L_0_Forever_LF
  • 2017-07-29 10:27
  • 115

[BZOJ3771]Triple(生成函数+FFT+容斥原理)

题目描述传送门题目大意:给出n个互不相同的数,问从中选出1/2/3个数,每一个可以组合出的和有多少种方案。题解首先1个的直接统计 将所有的数搞成一个生成函数,做一遍卷积搞出来选2个的答案 但是2个的存在选了两个相同的,或者选了一个排列,直接除2即可 然后生成函数卷两次统计选3个的答案 这里需...
  • Clove_unique
  • Clove_unique
  • 2017-04-25 23:23
  • 455

【bzoj3771】Triple FFT

a表示一个的方案数 b表示取两个相同的 c表示取三个相同的 最终,取一个的是a 取两个的是(a*a-b)/2 取三个的是(a*a*a-3*a*b+2*z)/6 a*a*a用FFT算就可以了 乘法是序列的卷积 #include #include #include #incl...
  • u012288458
  • u012288458
  • 2016-03-25 08:05
  • 420
    个人资料
    • 访问:739415次
    • 积分:11558
    • 等级:
    • 排名:第1588名
    • 原创:417篇
    • 转载:3篇
    • 译文:0篇
    • 评论:45条
    云中谁寄锦书来