BZOJ3771 Triple

7 篇文章 0 订阅
4 篇文章 0 订阅

这真是个悲伤的故事

第一次看完题我笑了半天23333

还有就是要认真读题,题里说河神会拿一个,两个,或三个斧子,这并不是什么象征意义,而是确实只是会拿一个,两个或者三个……

这样的话我们把生成函数A搞出来

发现不能A+A^2+A^3直接搞,因为有拿重的

我们设B为把斧子的价值都乘2的生成函数,C为都乘3的生成函数(也就是一起拿两把和三把)

手动容斥一下,答案为A+(A^2-B)/2+(A^3-3*A*B+2*C)/6

FFT即可

和各路神犇尝试往n更大推广一下容斥的式子并没有成功-_-

#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<stack>
#include<queue>
#include<set>
#include<bitset>
#include<map>
using namespace std;
#define MAXN 800010
#define MAXM 1010
#define ll long long
#define eps 1e-8
#define INF 1000000000
#define MOD 1000000007
const double pi=acos(-1);
struct cl{
	double x;
	double y;
	cl(){
		
	}
	cl(double _x,double _y){
		x=_x;
		y=_y;
	}
	friend cl operator +(cl x,cl y){
		return cl(x.x+y.x,x.y+y.y);
	}
	friend cl operator -(cl x,cl y){
		return cl(x.x-y.x,x.y-y.y);
	}
	friend cl operator *(cl x,cl y){
		return cl(x.x*y.x-x.y*y.y,x.x*y.y+x.y*y.x);
	}
	friend cl operator *(double y,cl x){
		return cl(x.x*y,x.y*y);
	}
	friend cl operator /(cl x,double y){
		return cl(x.x/y,x.y/y);
	}
};
int n,N,L;
int R[MAXN];
cl a[MAXN],b[MAXN],c[MAXN],ans[MAXN];;
void fft(cl *a,int f){
	int i,j,k;
	for(i=0;i<n;i++){
		if(i<R[i]){
			swap(a[i],a[R[i]]);
		}
	}
	for(i=1;i<n;i<<=1){
		cl w(cos(pi/i),f*sin(pi/i));
		for(j=0;j<n;j+=(i<<1)){
			cl wl(1,0);
			for(k=0;k<i;k++,wl=wl*w){
				cl x=a[j+k],y=wl*a[j+i+k];
				a[j+k]=x+y;
				a[j+i+k]=x-y;
			}
		}
	}
	if(f==-1){
		for(i=0;i<n;i++){
			a[i]=a[i]/n;
		}
	}
}
int main(){
	int i,x;
	scanf("%d",&n);
	N=n;
	for(i=1;i<=N;i++){
		scanf("%d",&x);
		a[x].x+=1;
		b[x*2].x+=1;
		c[x*3].x+=1;
		n=max(n,x*3);
	}
	int m=n<<1;
	for(n=1;n<=m;n<<=1){
		L++;
	}
	for(i=0;i<n;i++){
		R[i]=R[i>>1]>>1|((i&1)<<(L-1));
	}
	fft(a,1);
	fft(b,1);
	fft(c,1);
	for(i=0;i<n;i++){
		ans[i]=a[i]+(a[i]*a[i]-b[i])/2+(a[i]*a[i]*a[i]-3*a[i]*b[i]+2*c[i])/6;
	}
	fft(ans,-1);
	for(i=0;i<n;i++){
		if(int(ans[i].x+0.1)){
			printf("%d %d\n",i,int(ans[i].x+0.1));
		}
	}
	return 0;
}

/*

*/


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值