求逆元

一、O(n)求逆元

inv[i]=(MODMODi)inv[MOD%i]%MOD

证明:

t=MODi,k=MOD
则有 ti+k0(modMOD)
tik(modMOD)
两边同时除以 ik 得到
tinv[k]inv[i](modMOD)
inv[i]MODiinv[MOD%i](modMOD)
inv[i](MODMODiinv[MOD%i](modMOD)
证毕

适用于MOD是质数的情况,能够O(n)时间求出1~n对模MOD的逆

代码实现:
    inv[1]=1;  
    for (int i=2;i<=n;++i)  
        inv[i]=(ll)(mod-mod/i)*inv[mod%i]%mod;  

二、费马小定理

在模为素数p的情况下,有费马小定理
ap11(modp)
ap2a1(modp)
也就是说a的逆元为 ap2
而在模不为素数p的情况下,有欧拉定理
aϕm1(modm)
a1aϕm1(modm)
因此逆元x便可以套用快速幂求得了 x=aϕm1
但是似乎还有个问题?如何判断a是否有逆元呢?
检验逆元的性质,看求出的幂值x与a相乘是否为1即可
PS:这种算法复杂度为 Olog2N 在几次测试中,常数似乎较上种方法大所以当p比较大的时候需要用快速幂求解。

代码实现:
typedef  long long ll;  
ll pow_mod(ll x, ll n)
{  
    ll res=1;  
    while(n>0)
    {  
        if(n&1)res=res*x%mod;  
        x=x*x%mod;  
        n>>=1;  
    }  
    return res;  
}  
pow_mod(x,mod-2);
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值