乘法逆元
对于缩系中的元素,每个数a均有唯一的与之对应的乘法逆元x,使得ax≡1(mod n)
一个数有逆元的充分必要条件是gcd(a,n)=1,此时逆元唯一存在
逆元的含义:模n意义下,1个数a如果有逆元x,那么除以a相当于乘以x。
1.扩展欧几里得
给定模数m,求a的逆相当于求解ax=1(mod m)
这个方程可以转化为ax-my=1
然后套用求二元一次方程的方法,用扩展欧几里得算法求得一组x0,y0和gcd
检查gcd是否为1
gcd不为1则说明逆元不存在
若为1,则调整x0到0~m-1的范围中即可
PS:这种算法效率较高,常数较小,时间复杂度为O(ln n)
typedef long long ll;
void extgcd(ll a,ll b,ll& d,ll& x,ll& y){
if(!b){ d=a; x=1; y=0;}
else{ extgcd(b,a%b,d,y,x); y-=x*(a/b); }
}
ll inverse(ll a,ll n){
ll d,x,y;
extgcd(a,n,d,x,y);
return d==1?(x+n)%n:-1;
}
2.费马小定理
在模为素数p的情况下,有费马小定理
a^(p-1)=1(mod p)
那么a^(p-2)=a^-1(mod p)
也就是说a的逆元为a^(p-2)
而在模不为素数p的情况下,有欧拉定理
a^phi(m)=1(mod m) (a⊥m)
同理a^-1=a^(phi(m)-1)
因此逆元x便可以套用快速幂求得了x=a^(phi(m)-1)
但是似乎还有个问题?如何判断a是否有逆元呢?
检验逆元的性质,看求出的幂值x与a相乘是否为1即可
PS:这种算法复杂度为O(log2N)在几次测试中,常数似乎较上种方法大
当p比较大的时候需要用快速幂求解
typedef long long ll;
ll pow_mod(ll x, ll n, ll mod){
ll res=1;
while(n>0){
if(n&1)res=res*x%mod;
x=x*x%mod;
n>>=1;
}
return res;
}
当模p不是素数的时候需要用到欧拉定理
时间复杂度 O(n√) 即求出单个欧拉函数的值
3.特殊情况
一:
当N是质数,
a是(N+1)的约数时,a−1=N+1a
这点也很好理解。当N是质数,0 < a < N时,
(a,N)=1
,则a肯定存在逆元。
而解出的
N+1a
就满足
N+1a⋅a≡1(modN)
,故它是a的逆元。
在CF 696C, N=1000000007时
ans=a/bmodm=amod(mb)/b
公式证明:
PS:实际上a mod (bm)/b这种的对于所有的都适用,不区分互不互素,而费马小定理和扩展欧几里得算法求逆元是有局限性的,它们都会要求
与
互素,如果a与m不互素,那就没有逆元,这个时候需要a mod (bm)/b来搞(此时就不是逆元的概念了)。但是当a与m互素的时候,bm可能会很大,不适合套这个一般公式,所以大部分时候还是用逆元来搞
4.逆元打表
有时会遇到这样一种问题,在模质数p下,求1~n逆元 n< p(这里为奇质数)。可以O(n)求出所有逆元,有一个递推式如下
它的推导过程如下,设,那么
对上式两边同时除,进一步得到
再把和
替换掉,最终得到
初始化,这样就可以通过递推法求出1->n模奇素数
的所有逆元了。
另外有个结论模
的所有逆元值对应
中所有的数,比如
,那么
对应的逆元是
。
typedef long long ll;
const int N = 1e5 + 5;
int inv[N];
void inverse(int n, int p) {
inv[1] = 1;
for (int i=2; i<=n; ++i) {
inv[i] = (ll) (p - p / i) * inv[p%i] % p;
}
}
例题可以参考http://blog.csdn.net/acdreamers/article/details/8220787