逆元的定义
给定正整数a,p,如果有 ,且a与p互质,则称x的最小正整数解为a模p的逆元。
一、扩展欧几里得算法
使用条件:基本上通用,不要求p为质数,且效率高,时间复杂度为。
证明过程:有解的条件是
,即a、p互质,所以根据扩展欧几里得原理,就把问题等价于求解
,就可以使用欧几里得算法了。
void extend_gcd(ll a, ll b, ll &x, ll &y){
if(b == 0){
x = 1, y = 0;
return;
}
extend_gcd(b, a % b, x, y);
ll tmp = x;
x = y;
y = tmp - (a / b) * y;
}
ll mod_inverse(ll a, ll mod){
ll x, y;
extend_gcd(a, mod, x, y);
return (x % mod + mod) % mod;
}
二、费马小定理
定理内容:如果p是一个质数,而整数a不是p的倍数,则有a^(p-1)≡1(mod p)。
使用条件:要求p为质数,效率也挺高,但由于扩展欧几里得算法通常情况下更优,因此该方法使用情况较少,时间复杂度为。
证明过程:要证明费马小定理,需要两个引理的辅助:
引理1(剩余系定理2):若a,b,c为任意3个整数,m为正整数,且(m,c) = 1,则当a·c≡b·c(mod m)时,有a≡b(mod m)。
引理2(完全剩余系性质2):若(