【数论】求逆元的四种方法

逆元的定义 

给定正整数a,p,如果有 ax \equiv 1 \: (mod \; p),且a与p互质,则称x的最小正整数解为a模p的逆元。

一、扩展欧几里得算法

使用条件:基本上通用,不要求p为质数,且效率高,时间复杂度为O(log \: n)

证明过程:ax \equiv 1 \: (mod \; p)有解的条件是gcd(a, p) = 1,即a、p互质,所以根据扩展欧几里得原理,就把问题等价于求解ax + py = 1,就可以使用欧几里得算法了。

void extend_gcd(ll a, ll b, ll &x, ll &y){
    if(b == 0){
        x = 1, y = 0;
        return;
    }
    extend_gcd(b, a % b, x, y);
    ll tmp = x;
    x = y;
    y = tmp - (a / b) * y;
}
ll mod_inverse(ll a, ll mod){
    ll x, y;
    extend_gcd(a, mod, x, y);
    return (x % mod + mod) % mod;
}

二、费马小定理

定理内容:如果p是一个质数,而整数a不是p的倍数,则有a^(p-1)≡1(mod p)。

使用条件:要求p为质数,效率也挺高,但由于扩展欧几里得算法通常情况下更优,因此该方法使用情况较少,时间复杂度为O(log \: n)

证明过程:要证明费马小定理,需要两个引理的辅助:

引理1(剩余系定理2):若a,b,c为任意3个整数,m为正整数,且(m,c) = 1,则当a·c≡b·c(mod m)时,有a≡b(mod m)。

引理2(完全剩余系性质2):若a_{i}(

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值