优化:等式约束

优化:等式约束1

问题描述:

等式约束:

minimizef(x)subject toh(x)=0

其中, xRn f:RnR h:RnRm h=[h1,...,hm]T ,并且 mn h 是连续可微的。

一些定义

  • regular point

    A point x satisfying the constraints h1(x)=0,...,hm(x)=0 is said to be a regular point of the constraints if the gradient vectors h1(x),...,hm(x) are linearly independent.

  • tangent space
    The tangent space at a point x on the surface S={xRn:h(x)=0} is the set T(x)={y:Dh(x)y=0}
  • normal space

    The normal space at a point x on the surface S={xRn:h(x)=0} is the set N(x)={xRn:x=Dh(x)Tz,zRm}

  • 定理

    T(x)=N(x) and T(x)=N(x)

拉格朗日条件

拉格朗日条件图解[1]:
拉格朗日条件图解


  • 拉格朗日定理

Let x be a local minimizer (or maximizer) of f:RnR , subject to h(x)=0 , h:RnRm,m<n . Assume that x is a regular point. Then, there exists λRm such that
Df(x)+λTDh(x)=0T
.
  • Example
    考虑下述问题
    maximizexTQxxTPx

    求解思路:
    用拉格朗日法求解,但是没有等式约束。通过观察发现,如果对 x 扩大一定倍数,如 t ,那么tx的解与 x 的相同,所以我们可以将 xTPx 约束为1,所以原问题变成
    maximizexTQxsubject toxTPx=1.

    便可以用拉格朗日法求解。

二次条件

上面所说的拉格朗日法是针对函数的一阶导的,下面就二阶导进行讨论。
L(x,λ) 是拉格朗日方程的Hessian矩阵:

L(x,λ)=F(x)+λ1H1(x)+....+λmHm(x)

给出结论:

  • 定理

    Suppose that f,hC2 and there exits a point xRn and λRm such that:

    1. Df(x)+λTDh(x)=0T .
    2. For all yT(x),y0 , we have yTL(x,λ)y>0 .
      Then, x is a strict local minimizer of f subject to h(x)=0.

    对于局部最大值也是同样的条件约束,区别在于第二项中的正定变成了负定。

[1]图片来自《AN INTRODUCTION TO OPTIMIZATION》P434


  1. 参考《AN INTRODUCTION TO OPTIMIZATION》和《CONVEX OPTIMIZATION》.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值