[最优化]等式约束的优化问题求解

本文探讨了等式约束优化问题,包括正则点、切线和法线空间的概念,以及拉格朗日条件和二阶必要条件。通过拉格朗日乘子法,阐述了在约束条件下寻找局部极小点的数学原理,并预告了不等式约束下的相关理论。
摘要由CSDN通过智能技术生成

等式约束的优化问题求解

基本概念

本文将讨论下类形状的优化问题

minimizef(x)subject toh(x)=0 m i n i m i z e f ( x ) s u b j e c t   t o h ( x ) = 0

其中 xRn,f:RnR,h:RnRm,h=[h1,...,hm]T,mn x ∈ R n , f : R n → R , h : R n → R m , h = [ h 1 , . . . , h m ] T , m ≤ n ,假定函数 h h 连续可微,即 h C 1
下面介绍几个基本概念:

正则点:对于满足约束 h1(x)=0,...,hm(x)=0 h 1 ( x ∗ ) = 0 , . . . , h m ( x ∗ ) = 0 的点 x x ∗ ,如果梯度向量 h1(x),...,hm(x) ∇ h 1 ( x ∗ ) , . . . , ∇ h m ( x ∗ ) 是线性无关的,则称 x x ∗ 是该约束的一个正则点。

切线空间:曲面 S=xRn:h(x)=0 S = x ∈ R n : h ( x ) = 0 中点 x x ∗ 处的切线空间为集合 T(x)={ y:Dh(x)y=0} T ( x ∗ ) = { y : D h ( x ∗ ) y = 0 } 。可以看出切线空间 T(x) T ( x ∗ ) 是矩阵 Dh(x) D h ( x ∗ ) 的零空间,即 T(x)=N(Dh(x)) T ( x ∗ ) = N ( D h ( x ∗ ) )

法线空间:曲面 S=xRn:h(x)=0 S = x ∈ R n : h ( x ) = 0 中点 x x ∗ 处的法线空间为集合 N(x)={ x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值