等式约束的优化问题求解
基本概念
本文将讨论下类形状的优化问题
minimizef(x)subject toh(x)=0 m i n i m i z e f ( x ) s u b j e c t t o h ( x ) = 0
其中 x∈Rn,f:Rn→R,h:Rn→Rm,h=[h1,...,hm]T,m≤n x ∈ R n , f : R n → R , h : R n → R m , h = [ h 1 , . . . , h m ] T , m ≤ n ,假定函数 h h 连续可微,即 。
下面介绍几个基本概念:
正则点:对于满足约束 h1(x∗)=0,...,hm(x∗)=0 h 1 ( x ∗ ) = 0 , . . . , h m ( x ∗ ) = 0 的点 x∗ x ∗ ,如果梯度向量 ∇h1(x∗),...,∇hm(x∗) ∇ h 1 ( x ∗ ) , . . . , ∇ h m ( x ∗ ) 是线性无关的,则称 x∗ x ∗ 是该约束的一个正则点。
切线空间:曲面 S=x∈Rn:h(x)=0 S = x ∈ R n : h ( x ) = 0 中点 x∗ x ∗ 处的切线空间为集合 T(x∗)={ y:Dh(x∗)y=0} T ( x ∗ ) = { y : D h ( x ∗ ) y = 0 } 。可以看出切线空间 T(x∗) T ( x ∗ ) 是矩阵 Dh(x∗) D h ( x ∗ ) 的零空间,即 T(x∗)=N(Dh(x∗)) T ( x ∗ ) = N ( D h ( x ∗ ) ) 。
法线空间:曲面 S=x∈Rn:h(x)=0 S = x ∈ R n : h ( x ) = 0 中点 x∗ x ∗ 处的法线空间为集合 N(x∗)={ x