关闭

【BZOJ3522】[Poi2014]Hotel【DFS】

258人阅读 评论(0) 收藏 举报
分类:

【题目链接】

NOIP2014D1T2是从这个题改的吧。。

题解:

首先可以发现,满足条件的点对一定是“有一个中心点,三个点到中心点的距离相等,且三个点分别在不同子树中”这种情况。

那么枚举中心点,然后遍历子树,统计答案。

d[i]为临时数组,表示当前子树中深度为i的点有多少个。

d1[i]表示,当前点已经遍历过的子树中,深度为i的点有多少个。

d2[i]表示,当前点已经遍历过的子树中,两个点深度都为i的点对有多少个。

那么ans = ∑(d2[i] * d[i])。

然后用d1和d去更新d2,用d去更新d1。


复杂度:

时间复杂度O(n^2),空间复杂度O(n)


收获:

树上统计类问题不一定是点分治,要想清楚。

/* Telekinetic Forest Guard */
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

typedef long long LL;

const int maxn = 5005;

int n, head[maxn], cnt, depth[maxn];
LL d1[maxn], d2[maxn], d[maxn];

struct _edge {
	int v, next;
} g[maxn << 1];

inline int iread() {
	int f = 1, x = 0; char ch = getchar();
	for(; ch < '0' || ch > '9'; ch = getchar()) f = ch == '-' ? -1 : 1;
	for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
	return f * x;
}

inline void add(int u, int v) {
	g[cnt] = (_edge){v, head[u]};
	head[u] = cnt++;
}

inline void dfs(int x, int f) {
	d[depth[x]]++;
	for(int i = head[x]; ~i; i = g[i].next) if(g[i].v ^ f) {
		depth[g[i].v] = depth[x] + 1;
		dfs(g[i].v, x);
	}
}

int main() {
	n = iread();
	for(int i = 1; i <= n; i++) head[i] = -1; cnt = 0;
	for(int i = 1; i < n; i++) {
		int u = iread(), v = iread();
		add(u, v); add(v, u);
	}

	LL ans = 0;
	for(int i = 1; i <= n; i++) {
		for(int j = 1; j <= n; j++) d1[j] = d2[j] = 0;

		for(int j = head[i]; ~j; j = g[j].next) {
			depth[g[j].v] = 1;
			dfs(g[j].v, i);
			for(int t = 1; t <= n; t++) {
				ans += d2[t] * d[t];
				d2[t] += d1[t] * d[t];
				d1[t] += d[t];
			}
			for(int t = 1; t <= n; t++) d[t] = 0;
		}
	}
	printf("%lld\n", ans);
	return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:117912次
    • 积分:4917
    • 等级:
    • 排名:第6142名
    • 原创:392篇
    • 转载:0篇
    • 译文:0篇
    • 评论:49条
    膜拜神犇
    最新评论