bzoj 2463: [中山市选2009]谁能赢呢?

2463: [中山市选2009]谁能赢呢?

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 2663  Solved: 1962
[ Submit][ Status][ Discuss]

Description

小明和小红经常玩一个博弈游戏。给定一个n×n的棋盘,一个石头被放在棋盘的左上角。他们轮流移动石头。每一回合,选手只能把石头向上,下,左,右四个方向移动一格,并且要求移动到的格子之前不能被访问过。谁不能移动石头了就算输。假如小明先移动石头,而且两个选手都以最优策略走步,问最后谁能赢?

Input

    输入文件有多组数据。
    输入第一行包含一个整数n,表示棋盘的规模。
    当输入n为0时,表示输入结束。
 

Output

对于每组数据,如果小明最后能赢,则输出”Alice”, 否则输出”Bob”, 每一组答案独占一行。

Sample Input

2
0

Sample Output

Alice

HINT

对于所有的数据,保证1<=n<=10000。

Source

好神啊QAQ

连sg函数都不用

证明:

n为偶时棋盘一定可以被若干个1*2的骨牌覆盖

先手每次都是从一块骨牌的一端走向另一端

后手总是走向另一块骨牌,所以先手必胜

n为奇时先手走完一步后又能被若干个1*2的骨牌覆盖了

所以先后手互相转变,后手必胜。

#include<cstdio>
#include<cstring>
int main()
{
	int n;scanf("%d",&n);
	while(n)	
	{
		if(n&1)	printf("Bob\n");
		else printf("Alice\n");
		scanf("%d",&n);
	}
	return 0;
}

内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势与长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度与泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研与工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习与智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型与贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建与超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块与混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值