为什么Nginx的性能要比Apache高?

为什么Nginx的性能要比Apache高很多?这得益于Nginx使用了最新的epollLinux 2.6内核)和kqueuefreebsd)网络I/O模型,而Apache则使用的是传统的select模型。

目前Linux下能够承受高并发访问的SquidMemcached都采用的是epoll网络I/O模型。

处理大量的连接的读写,Apache所采用的select网络I/O模型非常低效。


下面用一个比喻来解析Apache采用的select模型和Nginx采用的epoll模型进行之间的区别:

假设你在大学读书,住的宿舍楼有很多间房间,你的朋友要来找你。

select版宿管大妈就会带着你的朋友挨个房间去找,直到找到你为止。

epoll版宿管大妈会先记下每位同学的房间号,

你的朋友来时,只需告诉你的朋友你住在哪个房间即可,不用亲自带着你的朋友满大楼找人。

如果来了10000个人,都要找自己住这栋楼的同学时,select版和epoll版宿管大妈,谁的效率更高,不言自明。

同理,在高并发服务器中,轮询I/O是最耗时间的操作之一,selectepoll的性能谁的性能更高,同样十分明了。


epoll - I/O event notification facility

linux的网络编程中,很长的时间都在使用select来做事件触发。

linux新的内核中,有了一种替换它的机制,就是epoll

相比于selectepoll最大的好处在于它不会随着监听fd数目的增长而降低效率。

因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。

并且,在linux/posix_types.h头文件有这样的声明:

#define __FD_SETSIZE 1024

表示select最多同时监听1024fd,当然,可以通过修改头文件再重编译内核来扩大这个数目,但这似乎并不治本。


epoll的接口非常简单,一共就三个函数:

1int epoll_create(int size);

创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大。

这个参数不同于select中的第一个参数,给出最大监听的fd+1的值。

需要注意的是,当创建好epoll句柄后,它就是会占用一个fd值,在linux下如果查看/proc/进程id/fd/

是能够看到这个fd的,所以在使用完epoll后,必须调用close关闭,否则可能导致fd被耗尽。


2int epoll_ctl(int epfd, int op, int fd, structepoll_event *event);

epoll的事件注册函数,它不同与select是在监听事件时告诉内核要监听什么类型的事件,

而是在这里先注册要监听的事件类型。

第一个参数是epoll_create的返回值

第二个参数表示动作,用三个宏来表示:

EPOLL_CTL_ADD:注册新的fdepfd中;

EPOLL_CTL_MOD:修改已经注册的fd的监听事件;

EPOLL_CTL_DEL:从epfd中删除一个fd

第三个参数是需要监听的fd

第四个参数是告诉内核需要监听什么事

struct epoll_event结构如下:

typedef union epoll_data {

void *ptr;

int fd;

__uint32_t u32;

__uint64_t u64;

} epoll_data_t;

struct epoll_event {

__uint32_t events; /* Epoll events */

epoll_data_t data; /* User data variable */

};

events可以是以下几个宏的集合:

EPOLLIN 表示对应的文件描述符可以读(包括对端SOCKET正常关闭);

EPOLLOUT表示对应的文件描述符可以写;

EPOLLPRI表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);

EPOLLERR表示对应的文件描述符发生错误;

EPOLLHUP表示对应的文件描述符被挂断;

EPOLLET EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。

EPOLLONESHOT只监听一次事件,当监听完这次事件之后,

如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里


3int epoll_wait(int epfd, struct epoll_event * events, intmaxevents, int timeout);

等待事件的产生,类似于select调用。

参数events用来从内核得到事件的集合,maxevents告之内核这个events有多大,这个 maxevents的值不能大于创建epoll_create时的size,参数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久阻塞)。

该函数返回需要处理的事件数目,如返回0表示已超时。


4、关于ETLT两种工作模式:

可以得出这样的结论:

ET模式仅当状态发生变化的时候才获得通知,这里所谓的状态的变化并不包括缓冲区中还有未处理的数据,也就是说,如果要采用ET模式,需要一直read/write直到出错为止,很多人反映为什么采用ET模式只接收了一部分数据就再也得不到通知了,大多因为这样;而LT模式是只要有数据没有处理就会一直通知下去的。

那么究竟如何来使用epoll呢?其实非常简单。

通过在包含一个头文件#include 以及几个简单的API将可以大大的提高你的网络服务器的支持人数。

首先通过create_epoll(int maxfds)来创建一个epoll的句柄,其中maxfds为你epoll所支持的最大句柄数。

这个函数会返回一个新的epoll句柄,之后的所有操作将通过这个句柄来进行操作。

在用完之后,记得用close来关闭这个创建出来的epoll句柄。

之后在你的网络主循环里面,每一帧的调用epoll_wait(int epfd, epoll_event events, int max events,int timeout)来查询所有的网络接口,看哪一个可以读,哪一个可以写了。基本的语法为:

nfds = epoll_wait(kdpfd, events, maxevents, -1);

其中kdpfd为用epoll_create创建之后的句柄,events是一个epoll_event*的指针,当epoll_wait这个函数操作成功之后,epoll_events里面将储存所有的读写事件。

max_events是当前需要监听的所有socket句柄数。最后一个timeout epoll_wait的超时,为0的时候表示马上返回,为-1的时候表示一直等下去,直到有事件范围,为任意正整数的时候表示等这么长的时间,如果一直没有事件,则范围。一般如果网络主循环是单独的线程的话,可以用-1来等,这样可以保证一些效率,如果是和主逻辑在同一个线程的话,则可以用0来保证主循环的效率。

epoll_wait范围之后应该是一个循环,遍利所有的事件。


几乎所有的epoll程序都使用下面的框架:

for( ; ; )

{

nfds = epoll_wait(epfd,events,20,500);

for(i=0;i<nfds;++i)<p=""></nfds;++i)<>

{

if(events[i].data.fd==listenfd) //有新的连接

{

connfd = accept(listenfd,(sockaddr *)&clientaddr,&clilen); //accept这个连接

ev.data.fd=connfd;

ev.events=EPOLLIN|EPOLLET;

epoll_ctl(epfd,EPOLL_CTL_ADD,connfd,&ev); //将新的fd添加到epoll的监听队列中

}

else if( events[i].events&EPOLLIN ) //接收到数据,读socket

{

n = read(sockfd, line, MAXLINE)) < 0 //

ev.data.ptr = md; //md为自定义类型,添加数据

ev.events=EPOLLOUT|EPOLLET;

epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);//修改标识符,等待下一个循环时发送数据,异步处理的精髓

}

else if(events[i].events&EPOLLOUT) //有数据待发送,写socket

{

struct myepoll_data* md =(myepoll_data*)events[i].data.ptr; //取数据

sockfd = md->fd;

send( sockfd, md->ptr, strlen((char*)md->ptr), 0 );//发送数据

ev.data.fd=sockfd;

ev.events=EPOLLIN|EPOLLET;

epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev); //修改标识符,等待下一个循环时接收数据

}

else

{

//其他的处理

}

}

}

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
【4层】3100平米综合办公楼毕业设计(含计算书、建筑结构图) 、1资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 、1资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值