探索世界,改变世界

善于分享知识,勤于探索知识,知识就是力量。

排序:
默认
按更新时间
按访问量

【神经网络】神经网络架构大全剖析(附原始论文地址)

随着新的神经网络架构不时出现,很难跟踪这些架构。知道所有缩写(DCIGN,BiLSTM,DCGAN,anyone?)起初可能有点压倒性。 所以我决定编写一个包含许多这些体系结构的备忘单。这些大多数是神经网络,有些是完全不同的野兽。虽然所有这些体系结构都是新颖而独特的,但是当我绘制节点结构时......

2018-05-20 11:25:01

阅读数:7883

评论数:0

【已阅书籍记录】知识积累,坚持不懈;积跬步乃以至千里,积小流足以成江海。

阅读让我感受到思维的碰撞,碰撞产生的火花就是收获。 坚持学习,坚持阅读,充实自己,扩展思路。   目录 Linux  数据库 Python C语言 & 数据结构 网络 运维 虚拟化云计算 分布式 架构 DevOps & ...

2017-08-24 20:03:28

阅读数:358

评论数:0

【Pandas】Pandas数据分类

分类是与统计中的分类变量对应的pandas数据类型。分类变量采用有限的,通常是固定的可能值(类别 ; R中的级别)。例如性别,社会阶层,血型,国家归属,观察时间或通过李克特量表评级。 与统计分类变量相比,分类数据可能有一个顺序(例如“强烈同意”与“同意”或“第一次观察”与“第二次观察”),但数值...

2018-11-02 11:47:13

阅读数:94

评论数:0

【数据可视化】25个即时改进数据可视化设计的技巧

数据可视化不是关于显示数据; 它是以更容易理解的方式显示数据 - 这就是真正的价值所在。如果你想真正“看到”我们的意思,请看一下这个快速视频: 视频地址:https://vimeo.com/29684853 不幸的是,很多人认为将几张图表放在一起意味着您正在进行数据可视化设计。即使您对...

2018-11-01 09:19:51

阅读数:97

评论数:0

【数据分析】电商平台数据分析

目录 电商模式 年度重复购买率 转化率 年均购买率 购物车大小 弃买率 客户获取成本 平均每位客户营收 关键词和搜索词 推荐接受率 病毒性 邮件列表点入率 线下线上相结合 运送时间 库存可供率 图解电子商务   电商模式 年度重复购买率 用户获取模式:9...

2018-10-31 09:43:27

阅读数:136

评论数:0

【数据分析】数据指标

目录 什么是好的数据指标? 找出正确的数据指标的五点方法 1、定性指标与量化指标 2、虚荣指标与可付诸行动的指标 3、探索性指标与报告性指标 4、先见性指标与后见性指标 5、相关性指标与因果性指标 市场细分、同期群分析、AB测试和多变量分析 市场细分 同期群分析 AB和多变...

2018-10-30 18:12:36

阅读数:122

评论数:0

【数据分析】电商平台应该分析哪些数据?

首先要构建电商数据分析的基本指标体系,主要分为8个类指标 目录 1. 总体运营指标 2.网站流量指标 3. 销售转化指标 4. 客户价值指标 5.商品类指标 6. 市场营销活动指标 7. 风控类指标 8. 市场竞争指标   1. 总体运营指标 从流量、订单、总体销...

2018-10-30 14:32:34

阅读数:181

评论数:0

【Pandas】Pandas分组:结合切割和应用

通过“分组依据”,我们指的是涉及以下一个或多个步骤的过程: 根据某些标准将数据拆分为组。 将功能独立应用于每个组。 将结果组合到数据结构中。 其中,分割步骤是最直接的。实际上,在许多情况下,我们可能希望将数据集拆分成组并对这些组执行某些操作。 应用步骤: 聚合:计算每个组的摘要统计(或统计) ...

2018-10-30 10:18:33

阅读数:49

评论数:0

【数据可视化】Python中使用Bokeh进行数据可视化,第一部分:入门

提升您的可视化游戏 如果没有有效的方法来传达结果,最复杂的统计分析可能毫无意义。最近我在研究项目中的经验使我们利用数据科学来提高建筑能效,从而推动了这一点。在过去的几个月里,我的一个团队成员一直致力于一种称为小波变换的技术,该技术用于分析时间序列的频率成分。该方法取得了积极的成果,但她在解释它时...

2018-10-30 09:33:59

阅读数:93

评论数:0

【数据科学】数据科学家必需熟知的5个基本统计概念

目录 统计特征 概率分布 维度降低 过采样和欠采样 贝叶斯统计   在执行数据科学(DS)艺术时,统计数据可以成为一种强大的工具。从高层次来看,统计学是利用数学来进行数据的技术分析。诸如条形图之类的基本可视化可能会为您提供一些高级信息,但通过统计,我们可以以更加信息驱动和有针对性...

2018-10-29 14:21:48

阅读数:45

评论数:0

【python】Python的可变对象和不可变对象与其充当函数参数的后果

python有两种对象: 不可变对象,如:int、float、str、tuple 可变对象,如:list、dict、set 目录 可变对象与不可变对象的含义 不可变对象 案例说明: 小结 可变对象 案例说明: 小结 总结 函数的参数传递 不可变对象作为函数参数 案...

2018-10-24 18:01:00

阅读数:34

评论数:0

【机器学习】Python中随机森林的实现与解释

通过从单个决策树构建来使用和理解随机森林的指南。

2018-10-24 15:05:26

阅读数:128

评论数:0

【编程】避免 异步/等待 地狱

  async/await 将我们从回调地狱中释放出来,但人们已经开始滥用它,导致异步/等待地狱的诞生。 在本文中,我将尝试解释async/await 地狱是什么,我还将分享一些提示以逃避它。   什么是异步/等待地狱 在使用异步JavaScript时,人们经常一个接一个地编写多个语...

2018-10-24 10:55:38

阅读数:29

评论数:0

【数据科学】使用Python建立你的数据处理肌肉记忆

数据预处理流程   在搜索语法时,您是否因为破坏数据分析流而感到沮丧?为什么你在第三次查找之后仍然不记得它?这是因为你还没有足够的练习来为它建立肌肉记忆。 现在,想象一下,当您编写代码时,Python语法和函数会根据您的分析思路从指尖飞出。那太棒了!本教程旨在帮助您实现目标。 我建议每...

2018-10-24 10:48:08

阅读数:66

评论数:0

【数据处理】pandas数据处理优化方法小结

数据处理时使用最多的就是pandas库,pandas在数据处理方面很强大,集成了数据处理和数据可视化。 pandas的可视化使用的是matplotlib。   回到主题 问题1: 计算数据的某个字段的所有值,对其字段所有值进行运算 处理的字段数据为时间戳,需要计算该时间戳距离现在的时间...

2018-10-24 10:18:05

阅读数:35

评论数:0

【统计学】T校验、方差分析

总体均值的推断: t分布和正态分布的选择t分布:     总体标准差未知总体服从正态分布。     总体标准差短且样本容量大于30。正态分布:     总体标准差已且总体服从正态分布     总体标准差已知且样本容量大于30   t分布的自由度 = n - 1 n = 样本容量   基...

2018-10-22 14:54:06

阅读数:61

评论数:0

【统计学】假设校验

  假设是对总体参数(如总体成数p或总体均值)的陈述 假设检验是用于检验有关总体参数的陈述是否正确的标准过程 原假设和备择假设: 原假设()是假设检验最初的假设。对于本章中的假设检验,原假设总是为总体参数声明一个 其体数值,因此可以得到一个等式形式     (原假设):总体参数=陈述值 ...

2018-10-22 14:48:53

阅读数:51

评论数:0

【统计学】从样本到总体

总体和样本均值的符号:     n = 样本容量     u = 总体均值     x = 样本均值     σ = 总体标准差     s = 样本标准差   样本均值分布的特征:对于任何样本均值的分布: 样本容量越大,样本均值的分布越接近正态分布 总体中所有样本均值的平均值与总...

2018-10-22 14:38:56

阅读数:72

评论数:0

【统计学】相关性和因果关系

相关的类型:     正相关:两个变量同时增加(或减小)。     负相关:两个变量变化的趋势相反,一个变量增加而另一个变量减小。     不相关:两个变量间没有明显的(线性)关系。     非线性关系:两个变量有关联,但是以散点图呈现的相关关系不是直线形状。   相关类型散点图 ...

2018-10-22 14:30:04

阅读数:78

评论数:0

【统计学】正态分布

正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution),最早由A.棣莫弗在求二项分布的渐近公式中得到。高斯在研究测量误差时从另一个角度导出了它。 正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称...

2018-10-22 14:14:05

阅读数:62

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭