TensorFlow
ChenVast
有梦想,敢拼博,执着的走属于自己的路。无惧一切,勇往直前,做自己。成为一个伟大的人,改变世界。
Python软件基金会(PSF)成员,
国际数据管理协会(DAMA)会员
展开
-
ValueError: Only call `sparse_softmax_cross_entropy_with_logits` with named arguments (labels=..., l
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits (y,tf.argmax (y_, 1))这个语句造成:Traceback (most recent call last): File "C:/Users/pop/Desktop/python/TensorFlowLearn/6/mnist原创 2017-12-08 20:17:52 · 757 阅读 · 0 评论 -
TensorFlow错UnicodeDecodeError:'utf-8' codec can't decode byte 0xff in position 0: invalid start byte
image_raw_data = tf.gfile.FastGFile("../datasets/cat.jpg", "r").read()改为,二进制读:image_raw_data = tf.gfile.FastGFile("../datasets/cat.jpg", "rb").read()原创 2017-12-09 11:54:59 · 2485 阅读 · 0 评论 -
TensorFlow的图像预处理报错ValueError: Tried to convert ‘min_object_covered’ to a tensor and failed.
错误行:bbox_begin, bbox_size, _ = tf.image.sample_distorted_bounding_box ( tf.shape (image), bounding_boxes=bbox)改成:bbox_begin, bbox_size, _ = tf.image.sample_distorted_bounding_box (原创 2017-12-09 14:19:58 · 4944 阅读 · 2 评论 -
关于深度学习移动化的思考
一、 深度学习现状的瓶颈:1、 计算量巨大,消耗大量的计算资源2、 模型内存占用大,消耗大量内存资源3、 模型存储空间大,消耗大量存储空间4、 只能在云端利用其大量的资源进行模型训练5、 需要移动设备连接云端,不连接即无法使用其效果。6、 移动端资源(CPU、GPU、内存)和云端的差距过大,无法进行类似云端的大规模分布式训练。 总结:大模型耗费大量的资源(计原创 2017-12-07 09:40:49 · 3378 阅读 · 4 评论 -
【深度学习】TensorFlow系统架构和设计理念
TensorFlow系统架构设计理念 图的定义和图的运行完全分开。TensorFlow为“符号主义”的库。编程模式通常分为命令式编程和符号式编程。命令式编程:编写通常意义上的程序,容易理解和调试,按照原有的逻辑执行。符号式编程:涉及很多的嵌入式和优化,不同意理解和调试,运行速度相对提升。 符号式计算:先定义各种变量,然后建立一个数据流图,在数据流图中规定各个变量间的计算关系,最后对数据流图进行编译...原创 2018-03-10 09:49:41 · 3423 阅读 · 0 评论