[BZOJ1055][HAOI2008]玩具取名(dp)

245 篇文章 0 订阅
211 篇文章 0 订阅

题目描述

传送门

题解

这道题和之前做过的模拟赛里的“祖先”一题很像,并且比那个简单很多。
设f[l][r][a]表示将l~r这一段能否消成a这个字符,那么假设f[i][k][b]=true,f[k+1][j][c]=true并且bc可以转换成a的话,那么f[l][r][a]也为true。这样的话就可以做到 O(n4) 转移了。
然后最后判断f[1][n][x]就好~(≧▽≦)/~啦!

代码

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define MAXN 205
int W,I,N,G,n,cnt;
char s[MAXN];
struct hp{char x,y,z;}ch[MAXN];
bool f[MAXN][MAXN][100];
int main()
{
    scanf("%d%d%d%d\n",&W,&I,&N,&G);
    for (int i=1;i<=W;++i) gets(s),ch[++cnt].x=s[0],ch[cnt].y=s[1],ch[cnt].z='W';
    for (int i=1;i<=I;++i) gets(s),ch[++cnt].x=s[0],ch[cnt].y=s[1],ch[cnt].z='I';
    for (int i=1;i<=N;++i) gets(s),ch[++cnt].x=s[0],ch[cnt].y=s[1],ch[cnt].z='N';
    for (int i=1;i<=G;++i) gets(s),ch[++cnt].x=s[0],ch[cnt].y=s[1],ch[cnt].z='G';
    gets(s);n=strlen(s);
    for (int i=n;i>=1;--i) s[i]=s[i-1];

    for (int i=1;i<=n;++i) f[i][i][s[i]]=true;
    for (int len=2;len<=n;++len)
        for (int l=1;l<=n-len+1;++l)
        {
            int r=l+len-1;
            for (int k=l;k<=r;++k)
                for (int i=1;i<=cnt;++i)
                    f[l][r][ch[i].z]|=f[l][k][ch[i].x]&&f[k+1][r][ch[i].y];
        }
    bool flag=false;
    if (f[1][n]['W']) putchar('W'),flag=true;
    if (f[1][n]['I']) putchar('I'),flag=true;
    if (f[1][n]['N']) putchar('N'),flag=true;
    if (f[1][n]['G']) putchar('G'),flag=true;
    if (!flag) puts("The name is wrong!");
    else putchar('\n');
}

总结

①做过的题要多看一看,做过就忘非常zz。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值