Manacher 回文自动机 学习笔记

本文详细介绍了Manacher算法,一种高效的求解回文串问题的方法,并阐述了如何利用回文自动机进行回文串匹配。Manacher算法通过巧妙的字符串转换和关键变量的设置,在线性时间内解决问题;回文自动机则通过构建特殊的字符树来高效匹配回文串。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Manacher

“马拉车”算法

非常好写好调的回文串算法。
用途:在 O(n) 时间内,求出以每一个点为中心的回文串长度。

首先,有一个非常巧妙的转化。由于回文串长度有可能为奇数也有可能为偶数,说明回文中心不一定在一个字符上。所以要将字符串做如下处理:在每两个字母之间插入一个特殊字符,通常用“#”,这样所有的回文串就都变成了以一个字符为回文中心的。并且,我们需要在字符串的开头或者结尾插入另一个特殊字符,比如说“*”,防止它无休止地匹配下去。

变量声明:
mx:当前已经判断过的能成为回文串的最远长度。比如说如果字符串为bacabaaa,枚举回文中心到c,那么mx应该为5,即b的位置。
id:mx所对应的回文中心。
p[i]:以i为中心的回文串向某一边最多延伸的长度。同样是上面那个例子,p[3]=3,p[7]=2,p[1]=1.

然后直接上代码:

for (int i=1;i<=n;++i)
{
    if (mx>i) p[i]=min(p[2*id-i],mx-i);
    else p[i]=1;
    while (s[i-p[i]]==s[i+p[i]]) ++p[i];
    if (i+p[i]>mx)
    {
        mx=i+p[i];
        id=i;
    }
}

这样,我们就求出来了p[i]。
网上有很多关于manacher算法时间复杂度的证明,我感觉很奇怪,由于mx的单调性,感受一下时间复杂度显然是 O(n) 的。

整个算法的关键是通过i关于id的对称点的回文串来更新i的回文串。贴上几个图来看正确性显然。
这里写图片描述

回文自动机

类似AC自动机的一种回文串匹配自动机,也就是一棵字符树。准确的说,是两颗字符树,0号表示回文串长度为偶数的树,1号表示回文串长度为奇数的树。每一个节点都代表一个字符串,并且类似AC自动机那样,有字符基个儿子,它的第i个儿子就表示将字符基的第i个字符接到它表示的字符串两边形成的字符串。
同样类似AC自动机的是,每一个节点都有一个fail指针,fail指针指向的点表示当前串后缀中的最长回文串。特殊地,0号点的fail指针指向1,非0、1号点并且后缀中不存在回文串的节点不指向它本身,而是指向0.

变量声明:
len[i]:编号为i的节点表示的回文串的长度(一个节点表示一个回文串)。
ch[i][c]:编号为i的节点表示的回文串在两边添加字符c以后变成的回文串的编号(儿子)。
fail[i]:节点i失配以后跳转不等于自身的节点i表示的回文串的最长后缀回文串。
cnt[i]:节点i表示的本质不同的串的个数(建树时求出的不是完全的,最后重新统计一遍以后才是正确的)。
last:新添加一个字母后所形成的最长回文串表示的节点。
s[i]:第i次添加的字符(一开始设S[0] = -1,也可以是任意一个在串S中不会出现的字符)。
tot:添加的节点个数。
n:添加的字符个数。

下面是一个字符串abbaabba的回文自动机的建立过程。
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这个建树的过程看起来比较抽象,实际上,回文自动机的实质就是按顺序添加字符,每添加一个字符都要找出以这个字符为后缀的最长的回文串,方法就是在以前一个为后缀的所有回文串中找到一个可以和这个点匹配的,然后再加入到树中。
注意区分一下“字符”和“节点”的概念,一个字符就是字符串中的一个字符,而回文自动机当中的节点表示了一个字符串。

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define N 300010
#define LL long long
char s[N];
int n,now,cur,fail[N],cnt[N],len[N],tot,last,ch[N][26];
LL ans;

int newnode(int x)
{
    len[tot]=x;
    return tot++;
}
int get_fail(int x,int n)
{
    while(s[n-len[x]-1]!=s[n]) x=fail[x];
    return x;
}
LL Max(LL a,LL b)
{
    return (a>b)?a:b;
}
int main(){
    gets(s+1);
    s[0]=-1;fail[0]=1;last=0;
    newnode(0);newnode(-1);
    for(n=1;s[n];++n)
    {
        s[n]-='a';
        cur=get_fail(last,n);
        if (!ch[cur][s[n]])
        {
            now=newnode(len[cur]+2);
            fail[now]=ch[get_fail(fail[cur],n)][s[n]];
            ch[cur][s[n]]=now;
        }
        cnt[last=ch[cur][s[n]]]++;
    }
    for(int i=tot-1;i>=0;--i)
        cnt[fail[i]]+=cnt[i],ans=Max(ans,(LL)cnt[i]*(LL)len[i]);
    printf("%lld\n",ans);
}
<think>好的,我现在要仔细想想用户的问题:“回文自动机是什么”。首先,我需要确认用户的基础。可能用户已经了解过自动机理论,比如有限自动机(FA)、后缀自动机(SAM)等,但回文自动机可能是一个相对陌生的概念。用户可能是在学习字符串处理相关算法,或者在解决回文问题时遇到了这个数据结构,所以需要了解其基本原理和应用。 首先,我需要回忆回文自动机的定义。回文自动机,也叫作回文树(Palindromic Tree)或Eertree,是由Mikhail Rubinchik和Maxim信息量大的论文提出的,用于高效处理字符串中的所有回文子串的结构。它能够在线性时间内构建,并存储所有的唯一回文子串,同时支持一些查询操作,比如统计不同回文的数量、最长回文等。 接下来,我需要确定回文自动机的结构。回文自动机由节点组成,每个节点代表一个唯一的回文子串。每个节点包含以下信息:回文的长度、后缀链接(指向当前回文的最长真后缀回文)、以及转移边(用于在添加新字符时扩展新的回文)。根节点有两个,分别对应长度为-1和0的虚根,这是为了处理奇偶长度的回文。 然后,构建过程是怎样的呢?比如,假设字符串是“abba”,如何一步步构建自动机。初始时,创建两个根节点。然后逐个字符处理,维护当前最长回文后缀的位置。当添加新字符时,检查是否可以通过当前节点的转移边扩展,如果不行,则创建新节点,并更新后缀链接。这个过程类似于后缀自动机的构建,但专门针对回文结构。 还需要考虑时间复杂度和空间复杂度。根据文献,回文自动机的构建时间复杂度是O(n),其中n是字符串长度。空间复杂度是O(n),因为每个节点代表唯一的回文子串,而一个长度为n的字符串最多有n个不同的回文子串(比如全相同字符的情况,如“aaaaa”有n个回文子串)。 应用方面,回文自动机可以用于统计所有回文子串的数量、找出最长回文子串、计算每个回文出现的次数等。例如,在解决LeetCode上的回文相关问题时,回文自动机可能提供高效的解决方案。 但用户可能需要更具体的例子来理解。比如,构建过程中的步骤,或者如何通过后缀链接快速跳转。可能还需要比较回文自动机与其他方法(如Manacher算法)的异同。Manacher算法用于寻找最长回文子串,而回文自动机则更全面,能够处理所有回文子串的信息。 此外,用户可能想知道如何实现回文自动机。代码结构大致包括节点结构体的定义(包含长度、后缀链接、转移数组),初始化两个根节点,然后逐个字符处理,维护当前节点,并在必要时创建新节点,同时更新后缀链接。 需要注意的细节包括如何处理奇偶长度的回文。两个根节点中,长度为-1的节点用于处理奇长度回文,比如当添加字符时,从该节点出发可以形成长度为1的回文。而长度为0的节点处理偶长度回文。例如,当添加一个字符,当前节点无法扩展时,通过后缀链接回溯,直到找到可以扩展的位置或者到达根节点。 可能遇到的疑问点包括后缀链接的作用。后缀链接指向当前回文的最长真后缀回文,这在构建过程中帮助快速跳转,避免重复检查。例如,当添加新字符后,如果当前节点无法扩展,通过后缀链接找到可能的位置,减少时间复杂度。 最后,总结回文自动机的优势和适用场景。它适合需要处理多个回文子串的问题,尤其是在需要统计或频繁查询的情况下,而不仅仅是寻找最长回文。与动态规划相比,回文自动机在时间和空间上更高效,尤其是当字符串较长时。</think>回文自动机(Palindromic Automaton),又称回文树(Eertree),是一种专门用于高效处理字符串中所有回文子串的数据结构。它能在线性时间内构建,并支持统计唯一回文数量、查询最长回文等功能。 --- ### **核心原理** 1. **节点定义** 每个节点代表一个唯一的回文子串,包含以下信息: - `len`:回文长度 - `fail`:后缀链接(指向当前回文的最长真后缀回文) - `trans[]`:转移边(记录添加字符后形成的新回文) 2. **虚根设计** 有两个特殊根节点: - 虚根1(奇根):长度为 `-1`,用于处理奇数长度回文(如 `"a"`)。 - 虚根2(偶根):长度为 `0`,用于处理偶数长度回文(如 `"aa"`)。 3. **构建过程** 逐个字符处理字符串,维护当前最长回文后缀节点。每添加字符 `c` 时: - 从当前节点出发,沿后缀链接回溯,直到找到可扩展的节点。 - 若扩展成功,新建节点并更新后缀链接。 --- ### **时间复杂度** - **构建复杂度**:$O(n)$,其中 $n$ 为字符串长度。 - **空间复杂度**:$O(n)$,每个节点对应唯一回文子串。 --- ### **应用场景** 1. 统计所有不同回文子串的数量。 2. 查找最长回文子串。 3. 计算每个回文的出现次数。 4. 结合其他算法解决复杂回文问题(如回文分割、动态回文维护)。 --- ### **示例分析** 以字符串 `"abba"` 为例: 1. 初始状态:仅有虚根奇根(`len=-1`)和偶根(`len=0`)。 2. 添加字符 `a`: - 从偶根出发,形成长度为1的奇回文 `"a"`。 3. 添加字符 `b`: - 从 `"a"` 出发,无法扩展,回溯到奇根后新建节点 `"b"`。 4. 添加字符 `b`: - 从当前节点 `"b"` 扩展,形成 `"bb"`(偶回文)。 5. 添加字符 `a`: - 从 `"bb"` 扩展,形成 `"abba"`(偶回文)。 最终,回文自动机包含所有回文子串:`"a"`, `"b"`, `"bb"`, `"abba"`, `"b"`(末尾单独 `b`)。 --- ### **对比其他方法** - **Manacher算法**:仅求最长回文,时间复杂度 $O(n)$,但无法统计所有回文。 - **动态规划**:需 $O(n^2)$ 时间预处理,空间开销大。 - **回文自动机**:综合高效,适合处理多回文查询问题。 --- ### **代码实现要点** ```python class Node: def __init__(self): self.len = 0 # 回文长度 self.fail = None # 后缀链接 self.trans = {} # 转移边(字符→节点) # 初始化虚根 root_odd = Node() root_odd.len = -1 root_even = Node() root_even.len = 0 root_odd.fail = root_even.fail = root_odd # 初始指向自身 ``` --- 回文自动机通过巧妙的后缀链接和转移边设计,将回文处理效率提升到线性级别,是处理复杂回文问题的利器。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值