poj 2286 (自己对IDA*的一些理解)

原博客地址:http://blog.csdn.net/t1019256391/article/details/9257243

15s的时间,150000kb的内存,一眼就让人想到广搜,但状态实在太多,3^25-1种吧,想写又没下手。。。

其实这是一道IDA*的题目。

顺便讲一下自己对IDA*的理解:

1、什么是IDA*?

是结合深搜和广搜二者优势的一种算法,深搜内存消耗少,路径容易保存,状态少,但不能保证最优解。广搜能找到最优解,但内存开销大,状态多,代码长。 而IDA*就是二者的完美结合。它在深搜的基础上人为的增加一个deep(搜索深度),一旦当前深度大于等于这个deep则直接返回,然后deep++重新搜索。这样就保证了解的最优性。这就是ID。而通过对题目的分析,找到一个好的估价函数h(),用来描述当前状态到目标状态的估计值(理想值),用now+h()>deep来剪枝,这就是IDA*。

2、什么情况下用IDA*?

内存紧,状态多判重复杂,问题一定有解(或者无解情况能判断出来)。

这道题要求使得中间8个数都一样,可以得出,每移动一次,中间8个数最多只会改变1个,所以我们把

8 减去当前8个数中出现最多的次数 设计成我们的估价函数h,一旦当前深度now+h()超过了我们的deep,则剪枝。

这题蛋疼的地方就是做转换的时候数组的移动,不过可以事先用一个辅助数组来存下每次要交换的点。

本以为代码会很长,写完后发现还不到100行。

这题也是一个很好的IDA* hdu 1560

    #include<iostream>  
    #include<cstdio>  
    #include<algorithm>  
    #include<cstring>  
    #include<vector>  
    using namespace std;  
    int deep;  
    vector<int> ans;  
    int dig[8]={7,8,9,12,13,16,17,18};  
    int a[25];  
    //循环移动数组,,后一个数字等于前一个数字
    int move[8][15]=  
    {  
        {0,1,23,3,1,7,3,12,7,16,12,21,16,23,21},  
        {0,2,24,4,2,9,4,13,9,18,13,22,18,24,22},  
        {0,11,5,10,11,9,10,8,9,7,8,6,7,5,6},  
        {0,20,14,19,20,18,19,17,18,16,17,15,16,14,15},  
        {0,24,2,22,24,18,22,13,18,9,13,4,9,2,4},  
        {0,23,1,21,23,16,21,12,16,7,12,3,7,1,3},  
        {0,14,20,15,14,16,15,17,16,18,17,19,18,20,19},  
        {0,5,11,6,5,7,6,8,7,9,8,10,9,11,10}  
    };  
    int ret[8]={5,4,7,6,1,0,3,2};   //还原数组  
    bool isend()  
    {  
        int tmp=a[7];  
        for(int i=1;i<8;i++)  
        {  
            if(a[dig[i]]!=tmp)  
                return false;  
        }  
        return true;  
    }  
    int h()  
    {  
        int maxn=0;  
        int tmp[4]={0};  
        for(int i=0;i<8;i++)  
        {  
            tmp[a[dig[i]]]++;  
        }  
        maxn=max(tmp[1],max(tmp[2],tmp[3]));  
        return 8-maxn;  
    }  
    void change(int k)  
    {  
        a[0]=a[move[k][2]];  
        for(int i=1;i<15;i+=2)  
        {  
            if(i==13) a[move[k][i+1]]=a[0];  
            else a[move[k][i+1]]=a[move[k][i]];  
        }  
    }  
    bool dfs(int now)  
    {  
        if(now==deep) return isend();  
        if(now+h()>deep) return false;  //剪枝
        for(int i=0;i<8;i++)  
        {  
            change(i);  
            ans.push_back(i);  
            if(dfs(now+1)) return true;  
            ans.pop_back();  
            change(ret[i]);  
        }  
        return false;  
    }  
    int main()  
    {  
        while(scanf("%d",&a[1])&&a[1])  
        {  
            ans.clear();  
            for(int i=2;i<=24;i++)  
            {  
                scanf("%d",&a[i]);  
            }  
            if(isend())  
            {  
                printf("No moves needed\n");  
                printf("%d\n",a[7]);  
                continue;  
            }  
            deep=1;  
            while(dfs(0)==false)  
            {  
                deep++;  
            }  
            for(int i=0;i<ans.size();i++)  
            {  
                putchar(ans[i]+'A');  
            }  
            printf("\n%d\n",a[7]);  
        }  
        return 0;  
    }  
这是一道比较经典的计数问题。题目描述如下: 给定一个 $n \times n$ 的网格图,其中一些格子被标记为障碍。一个连通块是指一些被标记为障碍的格子的集合,满足这些格子在网格图中连通。一个格子是连通的当且仅当它与另一个被标记为障碍的格子在网格图中有公共边。 现在,你需要计算在这个网格图中,有多少个不同的连通块,满足这个连通块的大小(即包含的格子数)恰好为 $k$。 这是一道比较经典的计数问题,一般可以通过计算生成函数的方法来解决。具体来说,我们可以定义一个生成函数 $F(x)$,其中 $[x^k]F(x)$ 表示大小为 $k$ 的连通块的个数。那么,我们可以考虑如何计算这个生成函数。 对于一个大小为 $k$ 的连通块,我们可以考虑它的形状。具体来说,我们可以考虑以该连通块的最左边、最上边的格子为起点,从上到下、从左到右遍历该连通块,把每个格子在该连通块中的相对位置记录下来。由于该连通块的大小为 $k$,因此这些相对位置一定是 $(x,y) \in [0,n-1]^2$ 中的 $k$ 个不同点。 现在,我们需要考虑如何计算这些点对应的连通块是否合法。具体来说,我们可以考虑从左到右、从上到下依次处理这些点,对于每个点 $(x,y)$,我们需要考虑它是否能够与左边的点和上边的点连通。具体来说,如果 $(x-1,y)$ 和 $(x,y)$ 都在该连通块中且它们在网格图中有公共边,那么它们就是连通的;同样,如果 $(x,y-1)$ 和 $(x,y)$ 都在该连通块中且它们在网格图中有公共边,那么它们也是连通的。如果 $(x,y)$ 与左边和上边的点都不连通,那么说明这个点不属于该连通块。 考虑到每个点最多只有两个方向需要检查,因此时间复杂度为 $O(n^2 k)$。不过,我们可以使用类似于矩阵乘法的思想,将这个过程优化到 $O(k^3)$ 的时间复杂度。 具体来说,我们可以设 $f_{i,j,k}$ 表示状态 $(i,j)$ 所代表的点在连通块中,且连通块的大小为 $k$ 的方案数。显然,对于一个合法的 $(i,j,k)$,我们可以考虑 $(i-1,j,k-1)$ 和 $(i,j-1,k-1)$ 这两个状态,然后把点 $(i,j)$ 加入到它们所代表的连通块中。因此,我们可以设计一个 $O(k^3)$ 的 DP 状态转移,计算 $f_{i,j,k}$。 具体来说,我们可以考虑枚举连通块所包含的最右边和最下边的格子的坐标 $(x,y)$,然后计算 $f_{x,y,k}$。对于一个合法的 $(x,y,k)$,我们可以考虑将 $(x,y)$ 所代表的点加入到 $(x-1,y,k-1)$ 和 $(x,y-1,k-1)$ 所代表的连通块中。不过,这里需要注意一个细节:如果 $(x-1,y)$ 和 $(x,y)$ 在网格图中没有相邻边,那么它们不能算作连通的。因此,我们需要特判这个情况。 最终,$f_{n,n,k}$ 就是大小为 $k$ 的连通块的个数,时间复杂度为 $O(n^2 k + k^3)$。 参考代码:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值