八数码 poj1077 Eight(A*、IDA*)

八数码主要参考:刘亚宁学长的八数码八境界 等

A*主要参考:百度百科初识A*算法深入A*算法 等

IDA*主要参考:http://blog.csdn.net/urecvbnkuhbh_54245df/article/details/5856756http://blog.csdn.net/nomad2/article/details/6562140 等


人工智能课的作业,借此研究下八数码,及相关的搜索算法

八数码(九宫格)是一个空间搜索的问题,而且空间只有9!(362 880)的大小,只是10e5的数量级。

八数码的解决的方案由很多:

(1)非启发性的搜索:暴力广搜,双向广搜,迭代加深的深搜;

(2)启发性搜索:A*,IDA*;(启发性算法有局部择优搜索和最好优先搜索,A*和IDA*都属于最好优先搜索,局部择优搜索有爬山算法,不过还没有研究

(3)基于概率的随机搜索;遗传算法(比较有名的还有蚁群算法,模拟退火算法等智能搜索,不过没有研究


本文主要说明A*、IDA*的搜索解法。

下面是搜索可能用到的问题的分析处理

(1)状态表示每一个状态用一个二维数组记录当前的八数码位置信息,并用记录其它属性


(2)判重方法,hash方法。

1)比较直接的是hash成字符串在,set中判重,不过字符串的操作和set的处理,效率可能要低些

2)将九宫格的hash成十进制(或九进制的表示),不过表示的实际的数据范围要大于真实空间(9! ),因为有一些数据是不可能出现在九宫格中的,

比如数据:(111111111) 是不可能出现在九宫格中

3)利用康托展开,康拓展开计算了,一个排列在所有的全排列的名次。比如4个数的一个排列3 2 1 4,其在4的全排列的名次是 2 * (3!)+ 1 * (2!) + 0 * (1!) + 0 *(0!);其中第i个数是ai:则康拓展开的ai处的值 = (排列中ai后面比ai小的数的个数) * (ai后面数的个数的阶乘);这样就完全没有空间的浪费,所以采用此法。


(3)关于A*算法。A*算法是一个启发性算法,最好优先搜索算法。关键在于其估价函数,

状态n 的估价值为:f‘(n)= g'(n)+ h'(n);

g’(n)表示从初始状态开始到状态n的最短路径值(最小消耗值),h'(n)表示重状态n到终止状态的最短路经值的启发值。由于f‘(n)实现不可知,所以用f(n)来代替 

f(n)= g(n)+ h(n);

g(n)表示初始状态到状态n的实际路径值(消耗值)(代表搜索历史信息),是已知的,h(n)表示状态n到终止状态的消耗估计值,包含着搜索的启发信息。

满足条件:1)g(n)> =g'(n)通常是满足的

    2)h(n) <= h'(n),满足此条件时,可以保证最优解

h(n)的取值可以是,状态n和终止状态中不同位置数字的个数,也可以是没有就位数字到相应位置的曼哈顿距离之和(选择此法)。

关于估价函数的理解,还有待加深。。。

关于A*的理解。A*和之前的广度优先搜索,和优先队列的搜索(最短路的dij算法)很相似。它们搜索的区别就在于估价函数不同而已。

A*既包含历史信息,也包含启发信息,广搜和优先对列的搜索则只有历史信息,没有启发信息。

广搜的估价函数值就是其搜索的深度(或实际的路径值,只不过边值是1)(历史信息,也可以说是最短路径值,其实仔细考虑也是状态图所决定的,可以说是状态的属性),是A*的特例;

优先对列的搜索的估价函数则是从初始状态到n状态的实际路径值,只不过边值不一定是1而已(历史信息,也可以说最短路径值),也可以说是A*的特例。

当然还有待加深理解。。。


(4)A*解法的过程见:百度百科

数据结构Open表,Close表

Open表即优先队列或最小堆,用priority_queue时不能实现修改值,则直接插入即可;自己实现的最小堆,可以实现修改值,效率更高。(还没有实现最小堆的方法

Close表即hash_tab[],利用康托展开后

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
这是一道比较经典的计数问题。题目描述如下: 给定一个 $n \times n$ 的网格图,其中一些格子被标记为障碍。一个连通块是指一些被标记为障碍的格子的集合,满足这些格子在网格图中连通。一个格子是连通的当且仅当它与另一个被标记为障碍的格子在网格图中有公共边。 现在,你需要计算在这个网格图中,有多少个不同的连通块,满足这个连通块的大小(即包含的格子数)恰好为 $k$。 这是一道比较经典的计数问题,一般可以通过计算生成函数的方法来解决。具体来说,我们可以定义一个生成函数 $F(x)$,其中 $[x^k]F(x)$ 表示大小为 $k$ 的连通块的个数。那么,我们可以考虑如何计算这个生成函数。 对于一个大小为 $k$ 的连通块,我们可以考虑它的形状。具体来说,我们可以考虑以该连通块的最左边、最上边的格子为起点,从上到下、从左到右遍历该连通块,把每个格子在该连通块中的相对位置记录下来。由于该连通块的大小为 $k$,因此这些相对位置一定是 $(x,y) \in [0,n-1]^2$ 中的 $k$ 个不同点。 现在,我们需要考虑如何计算这些点对应的连通块是否合法。具体来说,我们可以考虑从左到右、从上到下依次处理这些点,对于每个点 $(x,y)$,我们需要考虑它是否能够与左边的点和上边的点连通。具体来说,如果 $(x-1,y)$ 和 $(x,y)$ 都在该连通块中且它们在网格图中有公共边,那么它们就是连通的;同样,如果 $(x,y-1)$ 和 $(x,y)$ 都在该连通块中且它们在网格图中有公共边,那么它们也是连通的。如果 $(x,y)$ 与左边和上边的点都不连通,那么说明这个点不属于该连通块。 考虑到每个点最多只有两个方向需要检查,因此时间复杂度为 $O(n^2 k)$。不过,我们可以使用类似于矩阵乘法的思想,将这个过程优化到 $O(k^3)$ 的时间复杂度。 具体来说,我们可以设 $f_{i,j,k}$ 表示状态 $(i,j)$ 所代表的点在连通块中,且连通块的大小为 $k$ 的方案数。显然,对于一个合法的 $(i,j,k)$,我们可以考虑 $(i-1,j,k-1)$ 和 $(i,j-1,k-1)$ 这两个状态,然后把点 $(i,j)$ 加入到它们所代表的连通块中。因此,我们可以设计一个 $O(k^3)$ 的 DP 状态转移,计算 $f_{i,j,k}$。 具体来说,我们可以考虑枚举连通块所包含的最右边和最下边的格子的坐标 $(x,y)$,然后计算 $f_{x,y,k}$。对于一个合法的 $(x,y,k)$,我们可以考虑将 $(x,y)$ 所代表的点加入到 $(x-1,y,k-1)$ 和 $(x,y-1,k-1)$ 所代表的连通块中。不过,这里需要注意一个细节:如果 $(x-1,y)$ 和 $(x,y)$ 在网格图中没有相邻边,那么它们不能算作连通的。因此,我们需要特判这个情况。 最终,$f_{n,n,k}$ 就是大小为 $k$ 的连通块的个数,时间复杂度为 $O(n^2 k + k^3)$。 参考代码:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值