HDU 5514 Frogs (容斥+数论)

原创 2017年10月02日 17:04:04

Frogs

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2810    Accepted Submission(s): 904


Problem Description
There are m stones lying on a circle, and n frogs are jumping over them.
The stones are numbered from 0 to m1 and the frogs are numbered from 1 to n. The i-th frog can jump over exactly ai stones in a single step, which means from stone j mod m to stone (j+ai) mod m (since all stones lie on a circle).

All frogs start their jump at stone 0, then each of them can jump as many steps as he wants. A frog will occupy a stone when he reach it, and he will keep jumping to occupy as much stones as possible. A stone is still considered ``occupied" after a frog jumped away.
They would like to know which stones can be occupied by at least one of them. Since there may be too many stones, the frogs only want to know the sum of those stones' identifiers.
 

Input
There are multiple test cases (no more than 20), and the first line contains an integer t,
meaning the total number of test cases.

For each test case, the first line contains two positive integer n and m - the number of frogs and stones respectively (1n104, 1m109).

The second line contains n integers a1,a2,,an, where ai denotes step length of the i-th frog (1ai109).
 

Output
For each test case, you should print first the identifier of the test case and then the sum of all occupied stones' identifiers.
 

Sample Input
3 2 12 9 10 3 60 22 33 66 9 96 81 40 48 32 64 16 96 42 72
 

Sample Output
Case #1: 42 Case #2: 1170 Case #3: 1872
 

Source



题意是有n只青蛙,m块石头。每只青蛙一次跳a[i]步,当这块石头被跳过,即被占领,石头是环状分布,标号是0-m,问最后青蛙占领所有的石头的标号的总和是多少。也就是求所有青蛙跳过的石头不重复的总和是多少。

这里要注意一定是不重复的石头,石头的重复与否直接决定了容斥是否进行。不难发现,每只青蛙跳过几次后总会出现循环节,也就是一直跳以前的跳过的石头,所以不妨拿第一组示例进行分析,看看所有跳过的石头跟石头总数和青蛙每次跳的步数有没有什么必要的联系。

第一次示例被跳过的石头有:2,3,4,6,8,9,10.  不难发现跳过的石头一定是gcd(a[i],m)的倍数,如果再仔细计算(此处略去一万秒仔细计算的时间,同时略去一万种仔细计算的尝试),会发现每个出现的石头都是m的因子%gcd(a[i],m)==0的倍数,然后把这几组数列举一下:

2对应: 2,4,6,8,10
3对应: 3,6,9
4对应: 4,8
6对应: 6

不难发现(好难啊!)重复次数如下:
2:0次        3:0次        10: 0次
4:1次        8:1次 
6:2次

为什么会出现重复?而且每次重复都是前面因子的倍数,所以后面的数需要用到容斥原理,然后,前面的数就是等差数列的前n项和,n=(m-1)/ 因子。
不知道哪位大神有容斥原理的通用模板,真不想自己写,哎。下篇博客见。

代码实现:
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<cstdio>
#define ll long long
#define mset(a,x) memset(a,x,sizeof(a))

using namespace std;
const double PI=acos(-1);
const int inf=0x3f3f3f3f;
const double esp=1e-6;
const int maxn=10005;
const int mod=1e9+7;
int dir[4][2]={0,1,1,0,0,-1,-1,0};
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll inv(ll b){if(b==1)return 1; return (mod-mod/b)*inv(mod%b)%mod;}
ll fpow(ll n,ll k){ll r=1;for(;k;k>>=1){if(k&1)r=r*n%mod;n=n*n%mod;}return r;}

ll visit[maxn],ans[maxn],factor[maxn],map[maxn];
int main()
{
	ll t,i,j,k,n,m,flag=1;
	cin>>t;
	while(t--)
	{
		mset(visit,0);
		mset(ans,0);
		mset(map,0);
		mset(factor,0);
		cin>>n>>m;
		for(i=0;i<n;i++)
		cin>>map[i];
		
		k=0;
		for(i=1;i*i<=m;i++)             //求因子 
		{
			if(m%i==0)
			{
				if(i*i!=m)
				{
					factor[k++]=i;
					factor[k++]=m/i;
				}
				else
				factor[k++]=i;
			}
		}
		sort(factor,factor+k);
		
		for(i=0;i<n;i++)               //标记出能用到的因子 
		{
			int g=gcd(map[i],m);
			for(j=0;j<k;j++)
			{
				if(factor[j]%g==0)
				visit[j]=1;
			}
		}
		visit[k-1]=0;
		
		ll sum=0;
		for(i=0;i<k;i++)
		{
			if(visit[i]!=ans[i])
			{
				ll temp=(m-1)/factor[i];
				
				sum+=(ll)temp*(temp+1)/2*factor[i]*(visit[i]-ans[i]);       //前面是前n项和的贡献,后面是容斥控制
				
				temp=visit[i]-ans[i];
				for(j=i;j<k;j++)                                    //以后因子是前面因子的倍数的话,就加上两者的差值 
				{
					if(factor[j]%factor[i]==0)
					ans[j]+=temp;
				}
			}
		}
		cout<<"Case #"<<flag++<<": "<<sum<<endl;
	}
	return 0;
}

版权声明:欢迎转载,请注明此博客地址。

相关文章推荐

HDU5514Frogs 【容斥定理】

FrogsTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submi...

HDU 5514 (ACM 2015 沈阳) Frogs [容斥+记忆化搜索]

N只青蛙,在一个长度为M的环上跳,环上有M个方块,标号分别为0..M-1,面每只青蛙的跳跃的步长是Ai,一开始在0号位置,每次回跳到(当前位置+Ai)%M的地方,问所有青蛙一直跳下去,最后有青蛙跳过的...

HDU 5514 Frogs(巧妙地容斥)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5514题目大意:有n个青蛙和m个石头编号为1-m-1,青蛙每次跳Ni步,问每次跳完后覆盖的石头的编号的和...

Frogs (hdu5514)——2015ACM/ICPC亚洲区沈阳站(容斥定理)

There are mm stones lying on a circle, and nn frogs are jumping over them.  The stones are numb...

HDU 5514 Frogs(容斥原理)——2015ACM/ICPC亚洲区沈阳站-重现赛(感谢东北大学)

传送门 FrogsTime Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S...

HDU 5514 Frogs (2015沈阳F题&&容斥+剪枝)

分析:a[i]a[i]能到达的点为gcd(a[i],m)gcd(a[i],m)的倍数。预处理出所有gcdgcd,两个不同a[i]a[i]能同时到的点为lcm(gcd(a[i],m),gcd(a[j],...

HDU5514 Frogs(GCD+欧拉函数+数论)

Frogs Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Su...

hdu 5514 Frogs 2015沈阳区域赛 数论 欧拉 好题 开心的题

2015沈阳区域赛,现场A的题,银牌题。

数论-沈阳站-hdu-5514-容斥

题目意思是:有n只青蛙,m个石头0到m-1,每只青蛙初始在0号石头上面,每只青蛙能跳a[i]步,问所有被至少一只青蛙跳到的石头的下表总和。 解题思路:首先对于每只青蛙他可以跳到的石头应该是gcd(a...

HDU 5514 Frogs

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5514 题意:有m个石头围成一圈,编号分别为0到m-1,现在有n只青蛙,都在0号石头上,第i只青蛙会...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:HDU 5514 Frogs (容斥+数论)
举报原因:
原因补充:

(最多只允许输入30个字)