关闭

HDU 5514 Frogs (容斥+数论)

标签: acm数论容斥
560人阅读 评论(0) 收藏 举报
分类:

Frogs

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2810    Accepted Submission(s): 904


Problem Description
There are m stones lying on a circle, and n frogs are jumping over them.
The stones are numbered from 0 to m1 and the frogs are numbered from 1 to n. The i-th frog can jump over exactly ai stones in a single step, which means from stone j mod m to stone (j+ai) mod m (since all stones lie on a circle).

All frogs start their jump at stone 0, then each of them can jump as many steps as he wants. A frog will occupy a stone when he reach it, and he will keep jumping to occupy as much stones as possible. A stone is still considered ``occupied" after a frog jumped away.
They would like to know which stones can be occupied by at least one of them. Since there may be too many stones, the frogs only want to know the sum of those stones' identifiers.
 

Input
There are multiple test cases (no more than 20), and the first line contains an integer t,
meaning the total number of test cases.

For each test case, the first line contains two positive integer n and m - the number of frogs and stones respectively (1n104, 1m109).

The second line contains n integers a1,a2,,an, where ai denotes step length of the i-th frog (1ai109).
 

Output
For each test case, you should print first the identifier of the test case and then the sum of all occupied stones' identifiers.
 

Sample Input
3 2 12 9 10 3 60 22 33 66 9 96 81 40 48 32 64 16 96 42 72
 

Sample Output
Case #1: 42 Case #2: 1170 Case #3: 1872
 

Source



题意是有n只青蛙,m块石头。每只青蛙一次跳a[i]步,当这块石头被跳过,即被占领,石头是环状分布,标号是0-m,问最后青蛙占领所有的石头的标号的总和是多少。也就是求所有青蛙跳过的石头不重复的总和是多少。

这里要注意一定是不重复的石头,石头的重复与否直接决定了容斥是否进行。不难发现,每只青蛙跳过几次后总会出现循环节,也就是一直跳以前的跳过的石头,所以不妨拿第一组示例进行分析,看看所有跳过的石头跟石头总数和青蛙每次跳的步数有没有什么必要的联系。

第一次示例被跳过的石头有:2,3,4,6,8,9,10.  不难发现跳过的石头一定是gcd(a[i],m)的倍数,如果再仔细计算(此处略去一万秒仔细计算的时间,同时略去一万种仔细计算的尝试),会发现每个出现的石头都是m的因子%gcd(a[i],m)==0的倍数,然后把这几组数列举一下:

2对应: 2,4,6,8,10
3对应: 3,6,9
4对应: 4,8
6对应: 6

不难发现(好难啊!)重复次数如下:
2:0次        3:0次        10: 0次
4:1次        8:1次 
6:2次

为什么会出现重复?而且每次重复都是前面因子的倍数,所以后面的数需要用到容斥原理,然后,前面的数就是等差数列的前n项和,n=(m-1)/ 因子。
不知道哪位大神有容斥原理的通用模板,真不想自己写,哎。下篇博客见。

代码实现:
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<cstdio>
#define ll long long
#define mset(a,x) memset(a,x,sizeof(a))

using namespace std;
const double PI=acos(-1);
const int inf=0x3f3f3f3f;
const double esp=1e-6;
const int maxn=10005;
const int mod=1e9+7;
int dir[4][2]={0,1,1,0,0,-1,-1,0};
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll inv(ll b){if(b==1)return 1; return (mod-mod/b)*inv(mod%b)%mod;}
ll fpow(ll n,ll k){ll r=1;for(;k;k>>=1){if(k&1)r=r*n%mod;n=n*n%mod;}return r;}

ll visit[maxn],ans[maxn],factor[maxn],map[maxn];
int main()
{
	ll t,i,j,k,n,m,flag=1;
	cin>>t;
	while(t--)
	{
		mset(visit,0);
		mset(ans,0);
		mset(map,0);
		mset(factor,0);
		cin>>n>>m;
		for(i=0;i<n;i++)
		cin>>map[i];
		
		k=0;
		for(i=1;i*i<=m;i++)             //求因子 
		{
			if(m%i==0)
			{
				if(i*i!=m)
				{
					factor[k++]=i;
					factor[k++]=m/i;
				}
				else
				factor[k++]=i;
			}
		}
		sort(factor,factor+k);
		
		for(i=0;i<n;i++)               //标记出能用到的因子 
		{
			int g=gcd(map[i],m);
			for(j=0;j<k;j++)
			{
				if(factor[j]%g==0)
				visit[j]=1;
			}
		}
		visit[k-1]=0;
		
		ll sum=0;
		for(i=0;i<k;i++)
		{
			if(visit[i]!=ans[i])
			{
				ll temp=(m-1)/factor[i];
				
				sum+=(ll)temp*(temp+1)/2*factor[i]*(visit[i]-ans[i]);       //前面是前n项和的贡献,后面是容斥控制
				
				temp=visit[i]-ans[i];
				for(j=i;j<k;j++)                                    //以后因子是前面因子的倍数的话,就加上两者的差值 
				{
					if(factor[j]%factor[i]==0)
					ans[j]+=temp;
				}
			}
		}
		cout<<"Case #"<<flag++<<": "<<sum<<endl;
	}
	return 0;
}

0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

hdu 5514 Frogs 2015沈阳区域赛 数论 欧拉 好题 开心的题

2015沈阳区域赛,现场A的题,银牌题。
  • xc19952007
  • xc19952007
  • 2015-11-01 10:56
  • 1230

HDU 5514(Frogs-与n互质的数的求和)

给一个数列ai|m(1≤m≤109)a_i|m (1≤m≤10^9), 对<m<m且为至少一个aia_i的倍数的数,求和先把重复的数,倍数关系的数去掉。 显然m的因子不超过200个,令DD为mm...
  • nike0good
  • nike0good
  • 2015-11-03 00:45
  • 1354

HDU 5514 容斥原理

HDU 5514 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5514 题意: 几只青蛙(1e4)从0点出发,每次可以跳ai个石头到另外一个...
  • beihai2013
  • beihai2013
  • 2015-11-01 10:38
  • 1639

HDU5514Frogs 【容斥定理】

FrogsTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submi...
  • LuRiCheng
  • LuRiCheng
  • 2017-03-08 17:53
  • 286

HDU 5514 Frogs(容斥问题)

题意:现在有一个m块石头的围成的圈,现在有n只青蛙都在的0号石头上,圈上的石头编号为(0到m-1);现在第i只青蛙一次能跳 ai块石头,现在所有的青蛙都一直不停的跳下去,所有青蛙到过的石头的编号之和为...
  • xiangAccepted
  • xiangAccepted
  • 2017-10-11 13:19
  • 123

hdu5514Frogs(容斥原理)

显然,第 i 只青蛙能跳过的石头的 id = k*gcd(a[i],m)。所以题目就是相当于求 0 ~ m - 1 这些数中至少是一个 a[i] (a[i]|m) 的倍数。 0 ~ m - 1 这些...
  • abc13068938939
  • abc13068938939
  • 2017-02-12 00:03
  • 136

HDU 5514 (ACM 2015 沈阳) Frogs [容斥+记忆化搜索]

N只青蛙,在一个长度为M的环上跳,环上有M个方块,标号分别为0..M-1,面每只青蛙的跳跃的步长是Ai,一开始在0号位置,每次回跳到(当前位置+Ai)%M的地方,问所有青蛙一直跳下去,最后有青蛙跳过的...
  • GrassTreeFlower
  • GrassTreeFlower
  • 2015-11-03 13:06
  • 658

hdu 5514 Frogs 容斥或欧拉函数

题目链接 题意 输入n,m,n代表青蛙个数 m代表石头个数 石头围成一圈 由0编号到m-1 第二行输入n只青蛙的步长,一块石头不能被两只青蛙同时占领,求石头编号的和,以第一组样例 2 12 9 ...
  • yangdelu855
  • yangdelu855
  • 3天前 15:01
  • 13

HDU 5514 Frogs(容斥原理)——2015ACM/ICPC亚洲区沈阳站-重现赛(感谢东北大学)

传送门 FrogsTime Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S...
  • qingshui23
  • qingshui23
  • 2016-10-02 21:39
  • 1651

HDU 5514 Frogs(巧妙地容斥)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5514题目大意:有n个青蛙和m个石头编号为1-m-1,青蛙每次跳Ni步,问每次跳完后覆盖的石头的编号的和...
  • q610376681
  • q610376681
  • 2016-09-30 15:44
  • 195
    个人资料
    • 访问:52469次
    • 积分:1967
    • 等级:
    • 排名:千里之外
    • 原创:149篇
    • 转载:1篇
    • 译文:0篇
    • 评论:16条
    联系方式
    欢迎谈论交流:1245985209
    友情链接_winter2121
    http://blog.csdn.net/winter2121
    友情链接_anoxiacxy
    https://anoxiacxy.github.io/
    博客专栏