codeforces 622F. The Sum of the k-th Powers (拉格朗日插值法)★

转载 2016年08月29日 21:31:17

modulo 109 + 7


根据题目给出的例子我们可以发现, k次方的通项公式的最高次是k+1次, 根据拉格朗日插值法, 构建一个k+1次的方程需要k+2项。

然后公式是  , 对于这个题, p[i]就是i^k+(i-1)^k+(i-2)^k+.....+1^k, 这部分可以预处理出来。 自己不会搞公式 , 从http://www.cnblogs.com/qscqesze/p/5207132.html这里盗的(雾

我们发现上面就是(n-1)*(n-2)......*(n-k-2)/(n-i), 上面的那部分预处理出来, 除(n-i)相当于乘(n-i)的乘法逆元。

下面那部分就是(i-1)*(i-2)*...(i-i+1)     *   (i-i-1)*(i-i-2)*......(i-k-2), 相当于两个阶乘相乘, 阶乘预处理出来, 然后注意一下后面的正负号就可以了。

拉格朗日插值公式:

例如:当n=4时,上面的公式可简化为:
这是一个过4个点的唯一的三次多项式。[1] 

#include <cstdio>
#include <iostream>
#include <cstring>
#include <string>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <vector>
#include <set>
#include <list>
#include <queue>
#include <map>
using namespace std;
#define L(i) i<<1
#define R(i) i<<1|1
#define INF  0x3f3f3f3f
#define pi acos(-1.0)
#define eps 1e-3
#define maxn 1000100
#define MOD 1000000007
const long long mod = 1000000007;
long long n,k;
long long f[maxn],fac[maxn];
long long pow(long long a,long long b)
{
    long long ret = 1;
    while(b)
    {
        if(b & 1)
            ret = ret * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return ret;
}
int main()
{
    int t,C = 1;
    //scanf("%d",&t);
    while(scanf("%lld%lld",&n,&k) != EOF)
    {
        for(int i = 1; i <= k+2; i++)
            f[i] = (f[i-1] + pow(i*1LL,k))%mod;
        fac[0] = 1;
        for(int i = 1; i < maxn; i++)
            fac[i] = fac[i-1] * i % mod;
        if(n <= k+2)
        {
            printf("%lld\n",f[n]);
            continue;
        }
        long long cur = 1,ans = 0;
        for(int i = 1; i <= k+2; i++)
            cur = cur * (n-i) % mod;
        for(int i = 1; i <= k+2; i++)
        {
            long long tmp = pow(n-i,mod-2) % mod;
            long long tmp1 = pow(fac[i-1]%mod*fac[k+2-i]%mod,mod-2)%mod;
            int flag = (k+2-i)%2?-1:1;
            ans = (ans + cur%mod*tmp%mod*flag*tmp1%mod*f[i]%mod)%mod;
        }
        ans = (ans + mod) % mod;
        printf("%lld\n",ans);
    }
    return 0;
}



拉格朗日插值法

  • 2017年12月05日 15:29
  • 120KB
  • 下载

拉格朗日插值法 c语言

  • 2010年06月06日 09:04
  • 456B
  • 下载

【拉格朗日求自然数幂和】cf622F

F. The Sum of the k-th Powers time limit per test 2 seconds memory limit per test 256 megabytes ...

拉格朗日插值法

  • 2012年12月12日 13:48
  • 2KB
  • 下载

拉格朗日插值法

  • 2012年06月04日 19:16
  • 1KB
  • 下载

已知正弦函数表利用拉格朗日插值法计算正弦函数的近似值

算法介绍: C语言代码实现 #include float l(float *x,float x0,int k,int n); //拉格朗日基函数 float lagrange(float...

拉格朗日插值法c程序

  • 2009年09月30日 17:31
  • 29KB
  • 下载

拉格朗日插值法c语言版

  • 2013年10月19日 09:00
  • 2KB
  • 下载

拉格朗日插值法(伪代码 c/c++ python 实现)

数值计算方法:拉格朗日插值法的伪代码 c/c++ python编程实现。
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:codeforces 622F. The Sum of the k-th Powers (拉格朗日插值法)★
举报原因:
原因补充:

(最多只允许输入30个字)