杂七杂八—卡特兰数
文章平均质量分 81
Ezereal
这个作者很懒,什么都没留下…
展开
-
hdu 1133 Buy the Ticket
题意:M+N个人排队买票,票的单价是50¥,每个人只能买一张。 M个人拿50的去买,N个人拿100的去买,然后悲剧的是售票处开始的时候没有钱,所以如果拿100块买票人前面的拿50块买票的人小于或者等于用100块买票的人,这种排队方式就不合法,也就是不能顺利全部都买到票(因为没零钱找了)! 题解: 该题的公式:(C(m+n, n)-C(m+n, m+1))*m!*n! 化简即(m+n)!原创 2015-09-15 14:37:57 · 420 阅读 · 0 评论 -
hdu 1131 Count the Trees
本题为经典的卡特兰数问题。在不考虑顺序(即字母顺序),将结点编号为0~n-1;任取一个节点k作根节点,从而衍生出两个子问题f(k-1)和f(n-k),有f(k-1)*f(n-k)棵树;则 f(n)=f(0)(n-1)+f(1)f(n-1)+.......+f(n-1)*f(0);符合卡特兰数的递推公式。详见点击打开链接。有该递推公式可以推出f(n)=f(n-1)*(4n-2)/(n+1原创 2015-09-15 15:01:59 · 434 阅读 · 0 评论 -
HDU 1100 Trees Made to Order
题意: 分析 我们根据题意分析,设节点数为n的二叉树有h(n)个,考虑根节点下的左子树和右子树,他们的节点数分别为(0,n-1); (1,n-2);。。。;(n-1,0),所以h(n) = h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-1)*h(0), 且h(0)= 1, h(1)=1, 和卡特兰数的初始值与递推关系相符,所以我们得出h(n)就是个卡特兰数。原创 2015-12-04 11:48:43 · 544 阅读 · 0 评论