【bzoj3224】Tyvj 1728 普通平衡树

5 篇文章 0 订阅
2 篇文章 0 订阅

作大死的写了一发替罪羊树……
这也是很久的坑了……终于成功地写掉了替罪羊……
SGT这东西挺神奇的,相对于某疯狂旋转的splay来说挺暴力的(好像两个平衡树都是奇怪的暴力?)
判断某结点是否是替罪羊借鉴了某神犇的code
不过好像也就这么写的嘛。。。
对于某个节点,如果左子树或者右子树的size大于这个子树的size*alpha,这个节点就是替罪羊
然后要注意mark,cnt和size的意义、维护
mark标记这个点的权值有多少个,因为SGT是不会真正地删掉某个点的,只是把某个点标记为已删除,那么在insert和remove的时候,如果对应的权值节点存在的话,就把这个节点的mark值更改
size是平衡树里面这个节点的子树下有多少个节点
cnt是这个节点的子树下有多少个实际的权值,也就是mark值的和

insert的时候注意重复节点,mark、cnt和size的信息要维护好
remove的时候找到了某个点mark–之后,要从这个点一直到根都mainain一次
查某数rank就用cnt,注意一个点上可能有多个实际权值,要处理好mark的信息
查K大也要注意最后实际上是一个范围 k[cntlc+1,cntlc+marku]
查前驱后继的话没有想到更好的办法,就记录了子树的最大最小值,然后一路跑下去,更新答案。

好像细节还是挺多的……写了两天……太弱不解释T_T

#include <bits/stdc++.h>
#define maxn 150007
#define lc ch[u][0]
#define rc ch[u][1]

const int inf = 0x7fffffff;

inline void upmin(int&a , int b) { if (a > b) a = b ; }
inline void upmax(int&a , int b) { if (a < b) a = b ; }

inline int rd() {
    char c = getchar() ; int x = 0 , f = 1;
    while (!isdigit(c) && c != '-') c = getchar();
    if (c == '-') f = -1 ; else x = c - '0';
    while (isdigit(c = getchar())) x = x * 10 + c - '0';
    return x * f;
}

typedef int arr[maxn];

arr cnt , val , size , fa , mark , a , mx , mn , times;
int ch[maxn][2] , tot ,  node_tot , rt;
double alpha;

bool sgt(int u) {
    return size[lc] > alpha * size[u] + 3 || size[rc] > alpha * size[u] + 3;
}

void maintain(int u) {
    cnt[u] = mark[u] , size[u] = 1;
    if (mark[u]) mx[u] = mn[u] = val[u];
    else mx[u] = -(mn[u] = inf);
    if (lc) cnt[u] += cnt[lc] , size[u] += size[lc] , fa[lc] = u , upmax(mx[u] , mx[lc]) , upmin(mn[u] , mn[lc]);
    if (rc) cnt[u] += cnt[rc] , size[u] += size[rc] , fa[rc] = u , upmax(mx[u] , mx[rc]) , upmin(mn[u] , mn[rc]);
}

int insert(int&u , int v) {
    if (!u) {
        u = ++ node_tot;
        mx[u] = mn[u] = val[u] = v , cnt[u] = size[u] = mark[u] = 1;
        return 0;
    }
    cnt[u] ++ , size[u] ++;
    upmax(mx[u] , v) , upmin(mn[u] , v);
    if (v == val[u])
        { size[u] -- , mark[u] ++ ; return 0; }
    int ret = 0;
    int d = (v >= val[u]);
    ret = insert(ch[u][d] , v) , fa[ch[u][d]] = u;
    if (sgt(u)) ret = u;
    return ret;
}

void travel(int u) {
    if (!u) return;
    travel(lc);
    if (mark[u]) a[++ tot] = val[u] , times[tot] = mark[u];
    travel(rc);
}

void build(int&u , int l , int r) {
    if (l > r) return;
    u = ++ node_tot;
    int m = (l + r) >> 1;
    val[u] = a[m] , mark[u] = times[m];
    build(lc , l , m - 1) , build(rc , m + 1 , r);
    maintain(u);
}

void rebuild(int u) {
    int f = fa[u] , d = (ch[f][1] == u);
    tot = 0 , travel(u);
    build(u , 1 , tot) ;
    if (!f) 
        { rt = u ; return ; }
    for(fa[u] = f , ch[f][d] = u;f;f = fa[f]) maintain(f);
}

void insert_x(int u) {
    u = insert(rt ,  u);
    if (u) rebuild(u);
}

int find(int u , int v) {
    while (u && (val[u] != v || !mark[u])) u = ch[u][v >= val[u]];
    return u;
}

void remove_x(int u) {
    u = find(rt , u) ;
    if (!u) return ;
    for(mark[u] --;u;u = fa[u]) maintain(u);
}

void get_rank(int u) {
    int v = u , ret = 0;u = rt;
    while (1) {
        if (v >= val[u]) {
            ret += cnt[lc] + 1;
            if (mark[u] && v == val[u]) break;
            ret += mark[u] - 1;
            u = rc;
        }
        else u = lc;
    }
    printf("%d\n" , ret);
}

void order_of(int x) {
    int u = rt;
    while (1) {
        if (!mark[u]) {
            if (cnt[lc] >= x) u = lc ; else x -= cnt[lc] , u = rc;
        } else {
            if (cnt[lc] + mark[u] >= x && cnt[lc] + 1 <= x) break;
            if (cnt[lc] + mark[u] >  x) u = lc ; else x -= cnt[lc] + mark[u] , u = rc;
        }
    }
    printf("%d\n" , val[u]);
}

void get_pref(int u) {
    int v = u , ret = 0 ; u = rt ;
    while (u) {
        if (v > val[u]) {
            upmax(ret , mx[lc]);
            if (mark[u]) upmax(ret , val[u]);
            u = rc;
        }
        else u = lc;
    }
    printf("%d\n" , ret);
}

void get_succ(int u) {
    int v = u , ret = mx[rt] ; u = rt ;
    while (u) {
        if (v < val[u]) {
            upmin(ret , mn[rc]);
            if (mark[u]) upmin(ret , val[u]);
            u = lc;
        }
        else u = rc;
    }
    printf("%d\n" , ret);
}

int main() {
    #ifndef ONLINE_JUDGE
        freopen("data.txt" , "r" , stdin);
        freopen("data.out" , "w" , stdout);
    #endif  
    alpha = 0.542;
    mx[0] = - (mn[0] = inf);
    for(int i = rd() , opt , x ; i ; i --) {
        assert(!fa[rt]);
        opt = rd() , x = rd();
        if (opt == 1) insert_x(x);
        else if (opt == 2) remove_x(x);
        else if (opt == 3) get_rank(x);
        else if (opt == 4) order_of(x);
        else if (opt == 5) get_pref(x);
        else if (opt == 6) get_succ(x);
    }
    return 0;
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值