广义后缀自动机
就是给一堆字符串,把这些字符串插进一个trie之后,能够接收从某个trie节点走到叶子节点(也就是原来任意一个字符串的后缀)的字符串的自动机。
构造的时候有离线和在线的做法,dwj老司机的blog有code,2015年lyy的集训队论文有证明。
广义后缀自动机的转移数是
O(|Σ||T|)
的,其中
Σ
为字符集,
|T|
为trie的大小。离线建SAM(也就是按串的长度从小到大插入)可以得到这个下界,而在线建的时间复杂度是
O(|Σ||T|+G(T))
,其中
G(T)
为
T
<script type="math/tex" id="MathJax-Element-361">T</script>这棵trie中所有叶子节点的深度和。
在线建的时候其实和单串后缀自动机差不多,就是注意某个节点如果不满足len的性质的时候要再新建节点搞搞信息,和单串SAM建立的某个时候的分类讨论基本上是一样的,而离线建的时候是完全一样的代码。
我的代码:(在线)
inline void add(char c) {
int np = go[ed][c];
if (np) {
if (len[np] == len[ed] + 1)
ed = np;
else {
int r = ++ tot;
len[r] = len[ed] + 1;
fa[r] = fa[np] , fa[np] = r;
go[r] = go[np];
int p = ed;
while (go[p][c] == np)
go[p][c] = r , p = fa[p];
ed = r;
}
} else {
int p = ed;
np = ed = ++ tot;
len[np] = len[p] + 1;
while (!go[p][c])
go[p][c] = np , p = fa[p];
if (!p)
fa[np] = 1;
else {
int q = go[p][c];
if (len[q] == len[p] + 1)
fa[np] = q;
else {
int r = ++ tot;
len[r] = len[p] + 1;
fa[r] = fa[q] , fa[q] = fa[np] = r;
go[r] = go[q];
while (go[p][c] == q)
go[p][c] = r , p = fa[p];
}
}
}
}
广义后缀树
直接把广义后缀自动机建出来后,它的parent边就形成了“前缀的逆序树”,也就是说把主trie上的字符串全部倒过来然后插到一个压缩trie上。