关闭

CodeForces 369 div2 D Directed Roads 图论 数论

标签:
185人阅读 评论(0) 收藏 举报
分类:

D. Directed Roads
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it consists of n towns numbered from 1to n.

There are n directed roads in the Udayland. i-th of them goes from town i to some other town ai (ai ≠ i). ZS the Coder can flip the direction of any road in Udayland, i.e. if it goes from town A to town B before the flip, it will go from town B to town A after.

ZS the Coder considers the roads in the Udayland confusing, if there is a sequence of distinct towns A1, A2, ..., Ak (k > 1) such that for every 1 ≤ i < k there is a road from town Ai to town Ai + 1 and another road from town Ak to town A1. In other words, the roads are confusing if some of them form a directed cycle of some towns.

Now ZS the Coder wonders how many sets of roads (there are 2n variants) in initial configuration can he choose to flip such that after flipping each road in the set exactly once, the resulting network will not be confusing.

Note that it is allowed that after the flipping there are more than one directed road from some town and possibly some towns with no roads leading out of it, or multiple roads between any pair of cities.

Input

The first line of the input contains single integer n (2 ≤ n ≤ 2·105) — the number of towns in Udayland.

The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n, ai ≠ i)ai denotes a road going from town i to town ai.

Output

Print a single integer — the number of ways to flip some set of the roads so that the resulting whole set of all roads is not confusing. Since this number may be too large, print the answer modulo 109 + 7.

Examples
input
3
2 3 1
output
6
input
4
2 1 1 1
output
8
input
5
2 4 2 5 3
output
28
Note

Consider the first sample case. There are 3 towns and 3 roads. The towns are numbered from 1 to 3 and the roads are  initially. Number the roads 1 to 3 in this order.

The sets of roads that ZS the Coder can flip (to make them not confusing) are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}. Note that the empty set is invalid because if no roads are flipped, then towns 1, 2, 3 is form a directed cycle, so it is confusing. Similarly, flipping all roads is confusing too. Thus, there are a total of 6 possible sets ZS the Coder can flip.

The sample image shows all possible ways of orienting the roads from the first sample such that the network is not confusing.


题意:

给定一个有向图,你可以选择一些边使他们的方向改变,问有多少种方式能使这个图没有环。

思路:

假设有n条无向边组成了一个环,那么这些边如果是有向的,那方向有2种可能,所有总共有2^n种情况,其中2种能构成有向环(强联通),所以有n条边的环对答案的贡献是2^n-2,然后那些不在环里面的2种情况都可以.所以这个题就变成求环了,DFS一遍就可以了。

代码:

//************************************************************************//
//*Author : Handsome How                                                 *//
//************************************************************************//
//#pragma comment(linker, "/STA    CK:1024000000,1024000000")
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <algorithm>
#include <sstream>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <string>
#include <ctime>
#if defined(_MSC_VER) || __cplusplus > 199711L
#define aut(r,v) auto r = (v)
#else
#define aut(r,v) __typeof(v) r = (v)
#endif
#define foreach(it,o) for(aut(it, (o).begin()); it != (o).end(); ++ it)
#define fur(i,a,b) for(int i=(a);i<=(b);i++)
#define furr(i,a,b) for(int i=(a);i>=(b);i--)
#define cl(a) memset((a),0,sizeof(a))
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
#ifdef HandsomeHow
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define dbg(x) cout << #x << " = " << x << endl
#else
#define debug(...)
#define dbg(x)
#endif
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair <int, int> pii;
const int inf=0x3f3f3f3f;
const double eps=1e-8;
const int mod=1000000007;
const double pi=acos(-1);
inline void gn(long long&x){
    int sg=1;char c;while(((c=getchar())<'0'||c>'9')&&c!='-');c=='-'?(sg=-1,x=0):(x=c-'0');
    while((c=getchar())>='0'&&c<='9')x=x*10+c-'0';x*=sg;
}
inline void gn(int&x){long long t;gn(t);x=t;}
inline void gn(unsigned long long&x){long long t;gn(t);x=t;}
ll gcd(ll a,ll b){return a? gcd(b%a,a):b;}
ll powmod(ll a,ll x,ll mod){ll t=1ll;while(x){if(x&1)t=t*a%mod;a=a*a%mod;x>>=1;}return t;}
// (づ°ω°)づe★
//-----------------------------------------------------------------
const int maxn = 2e5+5;
struct Edge{
	int x,y;
}edge[maxn];
int deep[maxn];
vector<int>E[maxn];
bool vis[maxn];
bool vise[maxn];
vector<int>loop;
void dfs(int now, int len){
	if(vis[now]){
		loop.push_back(len-deep[now]);
		return;
	}
	deep[now] = len;
	vis[now] = true;
	for(int i = 0; i < E[now].size(); ++i){
		int &id = E[now][i];
		if(!vise[id]){
			vise[id] = true;
			if(now == edge[id].x) dfs(edge[id].y,len+1);
			else dfs(edge[id].x,len+1);
		}
	}
}


int main(){
#ifdef HandsomeHow
    //freopen("data.in","r",stdin);
    //freopen("data.out","w",stdout);
    time_t beginttt = clock();
#endif
	cl(vis);
	cl(vise);
	int n;
	gn(n);
	int t;
	fur(i,1,n){
		gn(t);
		edge[i].x = i;
		edge[i].y = t;
		E[i].push_back(i);
		E[t].push_back(i);
	}
	fur(i,1,n) if(!vis[i]) dfs(i,0);
	ll ans = 1ll;
	int su = 0;
	for(int i = 0; i < loop.size(); ++i){
		su += loop[i];
		ans = ans * ( (powmod(2,loop[i],mod)-2+mod)%mod ) % mod;
	}
	ans = ans * (powmod(2,n-su,mod)) % mod;
	printf("%I64d\n",ans);
#ifdef HandsomeHow
	time_t endttt = clock();
    debug("time: %d\n",(int)(endttt - beginttt));
#endif
	return 0;
}

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:14942次
    • 积分:669
    • 等级:
    • 排名:千里之外
    • 原创:55篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条