关闭

记忆化搜索专题--nkoj3749斐波拉契表示法

93人阅读 评论(0) 收藏 举报
分类:
P3749斐波拉楔表示法
时间限制 : - MS   空间限制 : 65536 KB 
评测说明 : 时限1000ms
问题描述

斐波拉楔数列0,1,1,2,3,5,8,13,21,......

给出一个整数K,用斐波拉楔数列各项加减来表示。例如

10=5+5

19=21-2

17=13+5-1

1070=987+89-5-1
对于给出的数字K,请计算出最少需要使用几次斐波拉楔数列的数字就可以表示出来。

输入格式

第一行,一个整数p,表示有p个数字(1<=P<=10)
接下来p行,每行一个正整数K,表示需要计算的数字(1<=K<=10^18)

输出格式

p行,每行一个整数,表示对应数字最少需要使用几次斐波拉楔数字。

样例输入

4
7
4
16
1070

样例输出

2
2
2
4




严重注意:二分查找时lowerbound只能到斐波拉契的第104项,超过爆longlong,会RE

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<map>
using namespace std;
map<long long,long long > f;
map<long long,bool > mark;
long long fib[150];
long long n;
long long dp(long long x){
	if(mark[x])return f[x];
	mark[x]=true;
	int r=lower_bound(fib+1,fib+1+104,x)-fib;
	if(fib[r]==x)return f[x]=1;
	int l=r-1;
	return f[x]=min(dp(fib[r]-x),dp(x-fib[l]))+1;
}
int main(){
	long long t,i;
	cin>>t;
	fib[1]=1;
	//fib[2]=1;
	for(i=2;i<=110;i++)fib[i]=fib[i-1]+fib[i-2];
	while(t--){
		//f.clear();
		//mark.clear();
		scanf("%I64d",&n);
		printf("%I64d\n",dp(n));
	}
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:35957次
    • 积分:2227
    • 等级:
    • 排名:第16883名
    • 原创:195篇
    • 转载:1篇
    • 译文:0篇
    • 评论:8条