bzoj1770 [Usaco2009 Nov]lights 燈(高斯消元解异或方程组+枚举自由元)

首先我们发现每个开关要不嗯1次,要不摁0次,没必要摁多次。于是对于每个点i,我们就得到了这样一个方程组:
a[i][1]*x[1]^a[i][2]*x[2]^…^a[i][n]*x[n]=1.
其中a[i][j]表示i,j是否有边,如果有就是1,否则是0.x[i]表示是否嗯开关i。然后我们用高斯消元解这个方程组,可以用bitset优化。然后爆搜枚举自由元,取最优解。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <bitset>
using namespace std;
#define inf 0x3f3f3f3f
#define ll long long
#define N 40
inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int n,m,X[N],ans=inf;
bitset<N>a[N];
inline void Gauss(){
    for(int i=1;i<=n;++i){
        int r=i;
        while(r<=n&&a[r][i]==0) ++r;
        if(r>n) continue;
        if(r!=i) swap(a[r],a[i]);
        for(int j=i+1;j<=n;++j)
            if(a[j][i]) a[j]^=a[i];
    }
}
void dfs(int now,int tot){
    if(tot>=ans) return;
    if(!now){ans=tot;return;}
    if(a[now][now]){
        int x=a[now][n+1];
        for(int i=now+1;i<=n;++i)
            if(a[now][i]) x^=X[i];
        X[now]=x;
        dfs(now-1,tot+x);
    }else{//是自由元
        X[now]=0;dfs(now-1,tot);
        X[now]=1;dfs(now-1,tot+1);
    }
}
int main(){
//  freopen("a.in","r",stdin);
    n=read();m=read();
    for(int i=1;i<=n;++i) a[i][i]=a[i][n+1]=1;
    while(m--){
        int x=read(),y=read();a[x][y]=1;a[y][x]=1;
    }Gauss();dfs(n,0);
    printf("%d\n",ans);
    return 0;
}
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值