NVIDIA GPU的Compute Capability一览

本文列举了 NVIDIA 多款 GPU 的 Compute Capability 版本号,包括 Tesla、Quadro 和 GeForce 系列等,这些信息对于进行 CUDA 编程及了解 GPU 支持特性至关重要。
GPUCompute Capability
Tesla K803.7
Tesla K403.5
Tesla K203.5
Tesla C20752.0
Tesla C2050/C20702.0
Tesla M405.2
Tesla K803.7
Tesla K403.5
Tesla K203.5
Tesla K103.0
Tesla M20xx2.0
Quadro M6000 24GB5.2
Quadro M60005.2
Quadro K60003.5
Quadro M50005.2
Quadro K52003.5
Quadro K50003.0
Quadro M40005.2
Quadro K42003.0
Quadro K40003.0
Quadro M20005.2
Quadro K22005.0
Quadro K20003.0
Quadro K2000D3.0
Quadro K12005.0
Quadro K6205.0
Quadro K6003.0
Quadro K4203.0
Quadro 4103.0
Quadro Plex 70002.0
Quadro K6000M3.0
Quadro M5500M5.0
Quadro K5200M3.0
Quadro K5100M3.0
Quadro M5000M5.0
Quadro K500M3.0
Quadro K4200M3.0
Quadro K4100M3.0
Quadro M4000M5.0
Quadro K3100M3.0
Quadro M3000M5.0
Quadro K2200M5.0
Quadro K2100M3.0
Quadro M2000M5.0
Quadro K1100M3.0
Quadro M1000M5.0
Quadro K620M5.0
Quadro K610M3.5
Quadro M600M5.0
Quadro K510M3.5
Quadro M500M5.0
NVIDIA NVS 8105.0
NVIDIA NVS 5103.0
NVIDIA NVS 3152.1
NVIDIA NVS 3102.1
NVS 5400M2.1
NVS 5200M2.1
NVS 4200M2.1
NVIDIA TITAN X6.1
GeForce GTX 10806.1
GeForce GTX 10706.1
GeForce GTX 10606.1
GeForce GTX TITAN X5.2
GeForce GTX TITAN Z3.5
GeForce GTX TITAN Black3.5
GeForce GTX TITAN3.5
GeForce GTX 980 Ti5.2
GeForce GTX 9805.2
GeForce GTX 9705.2
GeForce GTX 9605.2
GeForce GTX 9505.2
GeForce GTX 780 Ti3.5
GeForce GTX 7803.5
GeForce GTX 7703.0
GeForce GTX 7603.0
GeForce GTX 750 Ti5.0
GeForce GTX 7505.0
GeForce GTX 6903.0
GeForce GTX 6803.0
GeForce GTX 6703.0
GeForce GTX 660 Ti3.0
GeForce GTX 6603.0
GeForce GTX 650 Ti BOOST3.0
GeForce GTX 650 Ti3.0
GeForce GTX 6503.0
GeForce GTX 560 Ti2.1
GeForce GTX 550 Ti2.1
GeForce GTX 4602.1
GeForce GTS 4502.1
GeForce GTS 450*2.1
GeForce GTX 5902.0
GeForce GTX 5802.0
GeForce GTX 5702.0
GeForce GTX 4802.0
GeForce GTX 4702.0
GeForce GTX 4652.0
GeForce GT 7403.0
GeForce GT 7303.5
GeForce GT 730 DDR3,128bit2.1
GeForce GT 7203.5
GeForce GT 705*3.5
GeForce GT 640 (GDDR5)3.5
GeForce GT 640 (GDDR3)2.1
GeForce GT 6302.1
GeForce GT 6202.1
GeForce GT 6102.1
GeForce GT 5202.1
GeForce GT 4402.1
GeForce GT 440*2.1
GeForce GT 4302.1
GeForce GT 430*2.1
GeForce GTX 9805.2
GeForce GTX 980M5.2
GeForce GTX 970M5.2
GeForce GTX 965M5.2
GeForce GTX 960M5.0
GeForce GTX 950M5.0
GeForce 940M5.0
GeForce 930M5.0
GeForce 920M3.5
GeForce 910M5.2
GeForce GTX 880M3.0
GeForce GTX 870M3.0
GeForce GTX 860M3.0/5.0(**)
GeForce GTX 850M5.0
GeForce 840M5.0
GeForce 830M5.0
GeForce 820M2.1
GeForce 800M2.1
GeForce GTX 780M3.0
GeForce GTX 770M3.0
GeForce GTX 765M3.0
GeForce GTX 760M3.0
GeForce GTX 680MX3.0
GeForce GTX 680M3.0
GeForce GTX 675MX3.0
GeForce GTX 675M2.1
GeForce GTX 670MX3.0
GeForce GTX 670M2.1
GeForce GTX 660M3.0
GeForce GT 750M3.0
GeForce GT 650M3.0
GeForce GT 745M3.0
GeForce GT 645M3.0
GeForce GT 740M3.0
GeForce GT 730M3.0
GeForce GT 640M3.0
GeForce GT 640M LE3.0
GeForce GT 735M3.0
GeForce GT 635M2.1
GeForce GT 730M3.0
GeForce GT 630M2.1
GeForce GT 625M2.1
GeForce GT 720M2.1
GeForce GT 620M2.1
GeForce 710M2.1
GeForce 705M2.1
GeForce 610M2.1
GeForce GTX 580M2.1
GeForce GTX 570M2.1
GeForce GTX 560M2.1
GeForce GT 555M2.1
GeForce GT 550M2.1
GeForce GT 540M2.1
GeForce GT 525M2.1
GeForce GT 520MX2.1
GeForce GT 520M2.1
GeForce GTX 485M2.1
GeForce GTX 470M2.1
GeForce GTX 460M2.1
GeForce GT 445M2.1
GeForce GT 435M2.1
GeForce GT 420M2.1
GeForce GT 415M2.1
GeForce GTX 480M2.0
GeForce 710M2.1
GeForce 410M2.1
Tegra X15.3
Tegra K13.2
Jetson TK13.2

Reference: https://developer.nvidia.com/cuda-gpus

<think>我们正在回答用户关于如何查询NVIDIA GPU算力(Compute Capability)的问题。 根据用户提供的引用[1]中的信息,我们知道某些GPU的算力可能低于要求(例如2.1),而最低要求可能是3.0。因此,我们需要指导用户如何查询自己GPU的算力。 方法有多种,我们将提供几种常见的方法,包括使用命令行工具、查看官方网站以及通过编程方式(如PyTorch)查询。 注意:在回答中,我们将按照要求使用LaTeX格式,并且确保结构清晰。</think>### 如何查询 NVIDIA GPUCompute Capability(算力) Compute Capability(算力)是 NVIDIA GPU 硬件架构的代际标识,决定了 GPU 支持的 CUDA 特性和性能上限。以下是三种常用查询方法: #### 方法一:使用官方查询工具(推荐) 访问 NVIDIA 官方数据库,按型号查询: 1. 打开 [NVIDIA CUDA GPU 列表](https://developer.nvidia.com/cuda-gpus) 2. 在 "CUDA-Enabled GeForce and TITAN Products" 表格中查找您的 GPU 型号 3. 在 "Compute Capability" 列查看对应值 ![](https://developer.nvidia.com/sites/default/files/akamai/cuda/images/arch-grid.png) #### 方法二:通过命令行查询(需安装驱动) ```bash # Linux/macOS nvidia-smi --query-gpu=compute_cap --format=csv # Windows nvidia-smi -q | findstr "Compute" ``` 输出示例: ``` compute_cap 8.6 ``` 表示算力为 8.6(RTX 30 系列)[^1] #### 方法三:编程查询(Python) ```python import torch if torch.cuda.is_available(): device = torch.device("cuda:0") # 获取算力(格式:主版本.次版本) capability = torch.cuda.get_device_capability(device) print(f"Compute Capability: {capability[0]}.{capability[1]}") else: print("CUDA device not found") ``` #### 常见 GPU 算力对照表 | GPU 系列 | 算力 | 代表型号 | |------------------|------|------------------| | Tesla K80 | 3.7 | 服务器 GPU | | GTX 900 系列 | 5.2 | GTX 980 Ti | | RTX 20 系列 | 7.5 | RTX 2080 Ti | | RTX 30 系列 | 8.6 | RTX 3080/3090 | | RTX 40 系列 | 8.9 | RTX 4090 | > **关键提示**:深度学习框架(如 PyTorch)要求最低算力支持,例如 CUDA 11.x 需算力 ≥ 3.5。若出现类似 `requires capability >= 3.0 but device has 2.1` 的错误,说明您的 GPU 过旧[^1]。 ```mermaid graph LR A[查询算力] --> B{方法选择} B --> C[官网查询] B --> D[命令行] B --> E[编程查询] C --> F[无需安装] D --> G[需驱动] E --> H[需PyTorch] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值