数据结构—二叉树的构造

原创 2016年06月01日 13:17:34
/*
<pre name="code" class="cpp">线索化二叉树。
(1)中序线索化二叉树;
(2)遍历线索化二叉树。
*/
#include <iostream>
#include <malloc.h>
#define MaxSize 100
typedef char ElemType;
using namespace std;
typedef struct node
{
    ElemType data;
    int ltag,rtag;
    struct node *lchild;
    struct node *rchild;
} TBTNode;

/*
对以*p为根节点的二叉树中序线索化。
算法思路:
 在指针不为NULL时,先对*p节点的左子树线索化,若*p没有左孩子节点,则将其lchild指针线索化为指向其前驱节点*pre,将其ltag置为1,
 若*pre节点的rchild指针为NULL,将其rchild指针线索化为指向其后继节点*p,将其rtag置为1;最后对*p节点的右子树线索化。
*/
TBTNode *pre;
void Thread(TBTNode *&p)
//先对*p进行前驱节点线索化,再对*pre进行后继节点线索化,而并不是*p的后继节点,方便。
{
    if(p!=NULL)
    {
        Thread(p->lchild);     //左子树线索化
        if(p->lchild==NULL)    //*p左孩子不存在:进行前驱节点线索化
        {
            p->lchild=pre;
            p->ltag=1;
        }
        else
            p->ltag=0;
        if(pre->rchild==NULL)   //*pre右孩子不存在,进行后继节点线索化
        {
            pre->rchild=p;
            pre->rtag=1;
        }
        else
            pre->rtag=0;
        pre=p;
        Thread(p->rchild);     //右子树线索化
    }
}

/*
将以二叉链存储的二叉树b进行中序线索化,并返回线索化后头节点指针root。
*/
TBTNode *CreaThread(TBTNode *b)   //中序线索化二叉树
{
    TBTNode *root;
    root=(TBTNode *)malloc(sizeof(TBTNode));
    root->ltag=0;
    root->rtag=1;             //建立头节点
    root->rchild=b;           //建立头节点与二叉树的联系
    if(b==NULL)
        root->lchild=root;    //空二叉树
    else
    {
        root->lchild=b;
        pre=root;
        Thread(b);            //中序遍历线索化二叉树
        //最后处理,加入指向头节点的线索
        pre->rchild=root;
        pre->rtag=1;
        root->rchild=pre;      //头节点右线索化
    }
    return root;
}

void CreateTBTNode(TBTNode * &b,char *str)
{
    TBTNode *St[MaxSize],*p=NULL;
    int top=-1,k,j=0;
    char ch;
    b=NULL;             //建立的二叉树初始时为空
    ch=str[j];
    while (ch!='\0')    //str未扫描完时循环
    {
        switch(ch)
        {
        case '(':
            top++;
            St[top]=p;
            k=1;
            break;      //为左结点
        case ')':
            top--;
            break;
        case ',':
            k=2;
            break;                          //为右结点
        default:
            p=(TBTNode *)malloc(sizeof(TBTNode));
            p->data=ch;
            p->lchild=p->rchild=NULL;
            if (b==NULL)                    //*p为二叉树的根结点
                b=p;
            else                            //已建立二叉树根结点
            {
                switch(k)
                {
                case 1:
                    St[top]->lchild=p;
                    break;
                case 2:
                    St[top]->rchild=p;
                    break;
                }
            }
        }
        j++;
        ch=str[j];
    }
}

void DispTBTNode(TBTNode *b)  //输出二叉树
{
    if(b!=NULL)
    {
        cout<<b->data;
        if(b->lchild!=NULL||b->rchild!=NULL)
        {
            cout<<"(";       //有孩子节点才输出
            DispTBTNode(b->lchild);   //递归处理左子树
            if(b->rchild!=NULL)
                cout<<",";          //有右孩子节点时才输出
            DispTBTNode(b->rchild);   //递归处理右子树
            cout<<")";             //有孩子节点时才输出
        }
    }
}

/*
遍历线索化二叉树:
  算法思想:
     遍历某种次序的线索二叉树,从该次序的开始节点出发;反复找到该节点在该次序下的后继节点,直到终端节点,
     其rchild指针被线索化为指向头节点。
  (在中序二叉树中,开始节点就是根节点的最左下节点)
  (1)求当前节点在中序下的后继节点:
          当rtag==0时,后继节点为当前节点右子树的中序下的开始节点
          当rtag==1时,后继节点为右孩子节点
  (2)求当前节点在中序下的前驱节点:
          当ltag==0时,前驱节点为当前节点左子树的中序下的最后一个节点
          当ltag==1时,前驱节点为左孩子节点
  
*/
void ThInOrder(TBTNode *tb)
{
    TBTNode *p=tb->lchild;      //指向根结点
    while (p!=tb)
    {
        while (p->ltag==0)     //找开始节点
            p=p->lchild;
        cout<<p->data<<" ";   //访问开始节点
        while (p->rtag==1 && p->rchild!=tb)
        {
            p=p->rchild;
            cout<<p->data<<" ";
        }
        p=p->rchild;
    }
}

int main()
{
    TBTNode *b,*tb;
    CreateTBTNode(b,"A(B(D(,G)),C(E,F))");
    cout<<" 二叉树:";
    DispTBTNode(b);
    cout<<endl;
    tb=CreaThread(b);
    cout<<" 线索中序序列:";
    ThInOrder(tb);
    cout<<endl;
    return 0;
}



运行结果:


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

数据结构——二叉树的插入构造和删除操作

#include #include #include using namespace std; #define EQ(a,b) ( (a) == (b) ) #define ...

数据结构—赫夫曼二叉树的应用

  • 2011年07月01日 10:19
  • 90KB
  • 下载

数据结构—二叉树的检索

  • 2012年10月05日 13:38
  • 10KB
  • 下载

基础简单的数据结构-C语言-二叉树链表构造

二叉树是树的一种,只因该树中规定结点至多有两个子结点,故称二叉树。对比与树,二叉树可以是一颗空树,而树必须要有一个根结点。 满二叉树:一颗树种所有的叶结点都在同一层,而其他非终结点(叶节点以外的...
  • gaoapp
  • gaoapp
  • 2017年05月02日 11:31
  • 129

[数据结构]二叉树的遍历及构造树

二叉树的标准遍历方式有三种,分别为先序遍历、中序遍历和后序遍历,本篇文章主要介绍这三种遍历方式的非递归实现以及通过三种遍历方式中的两种(先序遍历和后序遍历除外)构造出结构化的树。 数据结构如下: st...

二叉树构造、遍历和释放--自己写数据结构

直接上代码 bitree.h文件如下: #ifndef _BITREE_H_ #define _BITREE_H_ typedef char TElemType; typedef struc...

数据结构Step by Step之树(1)- 二叉树 前序、中序、后序 LeetCode105根据前序中序的顺序构造树

遍历即将树的所有结点访问且仅访问一次。按照根节点位置的不同分为前序遍历,中序遍历,后序遍历。 前序遍历:根节点->左子树->右子树 中序遍历:左子树->根节点->右子树 后序遍历:左子树->右...

数据结构实验: 按层次构造二叉树及二叉树遍历

1、实验题目 按层次(从上到下,从左到右的顺序)输入树的结点,如果该结点为空,则用一个特定的值替代(比如0或者.)。例如下面的图中,输入为e b f a d . g . . c(当然为了方便输入...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:数据结构—二叉树的构造
举报原因:
原因补充:

(最多只允许输入30个字)