数据结构—二叉树的构造

原创 2016年06月01日 13:17:34
/*
<pre name="code" class="cpp">线索化二叉树。
(1)中序线索化二叉树;
(2)遍历线索化二叉树。
*/
#include <iostream>
#include <malloc.h>
#define MaxSize 100
typedef char ElemType;
using namespace std;
typedef struct node
{
    ElemType data;
    int ltag,rtag;
    struct node *lchild;
    struct node *rchild;
} TBTNode;

/*
对以*p为根节点的二叉树中序线索化。
算法思路:
 在指针不为NULL时,先对*p节点的左子树线索化,若*p没有左孩子节点,则将其lchild指针线索化为指向其前驱节点*pre,将其ltag置为1,
 若*pre节点的rchild指针为NULL,将其rchild指针线索化为指向其后继节点*p,将其rtag置为1;最后对*p节点的右子树线索化。
*/
TBTNode *pre;
void Thread(TBTNode *&p)
//先对*p进行前驱节点线索化,再对*pre进行后继节点线索化,而并不是*p的后继节点,方便。
{
    if(p!=NULL)
    {
        Thread(p->lchild);     //左子树线索化
        if(p->lchild==NULL)    //*p左孩子不存在:进行前驱节点线索化
        {
            p->lchild=pre;
            p->ltag=1;
        }
        else
            p->ltag=0;
        if(pre->rchild==NULL)   //*pre右孩子不存在,进行后继节点线索化
        {
            pre->rchild=p;
            pre->rtag=1;
        }
        else
            pre->rtag=0;
        pre=p;
        Thread(p->rchild);     //右子树线索化
    }
}

/*
将以二叉链存储的二叉树b进行中序线索化,并返回线索化后头节点指针root。
*/
TBTNode *CreaThread(TBTNode *b)   //中序线索化二叉树
{
    TBTNode *root;
    root=(TBTNode *)malloc(sizeof(TBTNode));
    root->ltag=0;
    root->rtag=1;             //建立头节点
    root->rchild=b;           //建立头节点与二叉树的联系
    if(b==NULL)
        root->lchild=root;    //空二叉树
    else
    {
        root->lchild=b;
        pre=root;
        Thread(b);            //中序遍历线索化二叉树
        //最后处理,加入指向头节点的线索
        pre->rchild=root;
        pre->rtag=1;
        root->rchild=pre;      //头节点右线索化
    }
    return root;
}

void CreateTBTNode(TBTNode * &b,char *str)
{
    TBTNode *St[MaxSize],*p=NULL;
    int top=-1,k,j=0;
    char ch;
    b=NULL;             //建立的二叉树初始时为空
    ch=str[j];
    while (ch!='\0')    //str未扫描完时循环
    {
        switch(ch)
        {
        case '(':
            top++;
            St[top]=p;
            k=1;
            break;      //为左结点
        case ')':
            top--;
            break;
        case ',':
            k=2;
            break;                          //为右结点
        default:
            p=(TBTNode *)malloc(sizeof(TBTNode));
            p->data=ch;
            p->lchild=p->rchild=NULL;
            if (b==NULL)                    //*p为二叉树的根结点
                b=p;
            else                            //已建立二叉树根结点
            {
                switch(k)
                {
                case 1:
                    St[top]->lchild=p;
                    break;
                case 2:
                    St[top]->rchild=p;
                    break;
                }
            }
        }
        j++;
        ch=str[j];
    }
}

void DispTBTNode(TBTNode *b)  //输出二叉树
{
    if(b!=NULL)
    {
        cout<<b->data;
        if(b->lchild!=NULL||b->rchild!=NULL)
        {
            cout<<"(";       //有孩子节点才输出
            DispTBTNode(b->lchild);   //递归处理左子树
            if(b->rchild!=NULL)
                cout<<",";          //有右孩子节点时才输出
            DispTBTNode(b->rchild);   //递归处理右子树
            cout<<")";             //有孩子节点时才输出
        }
    }
}

/*
遍历线索化二叉树:
  算法思想:
     遍历某种次序的线索二叉树,从该次序的开始节点出发;反复找到该节点在该次序下的后继节点,直到终端节点,
     其rchild指针被线索化为指向头节点。
  (在中序二叉树中,开始节点就是根节点的最左下节点)
  (1)求当前节点在中序下的后继节点:
          当rtag==0时,后继节点为当前节点右子树的中序下的开始节点
          当rtag==1时,后继节点为右孩子节点
  (2)求当前节点在中序下的前驱节点:
          当ltag==0时,前驱节点为当前节点左子树的中序下的最后一个节点
          当ltag==1时,前驱节点为左孩子节点
  
*/
void ThInOrder(TBTNode *tb)
{
    TBTNode *p=tb->lchild;      //指向根结点
    while (p!=tb)
    {
        while (p->ltag==0)     //找开始节点
            p=p->lchild;
        cout<<p->data<<" ";   //访问开始节点
        while (p->rtag==1 && p->rchild!=tb)
        {
            p=p->rchild;
            cout<<p->data<<" ";
        }
        p=p->rchild;
    }
}

int main()
{
    TBTNode *b,*tb;
    CreateTBTNode(b,"A(B(D(,G)),C(E,F))");
    cout<<" 二叉树:";
    DispTBTNode(b);
    cout<<endl;
    tb=CreaThread(b);
    cout<<" 线索中序序列:";
    ThInOrder(tb);
    cout<<endl;
    return 0;
}



运行结果:


版权声明:本文为博主原创文章,未经博主允许不得转载。

数据结构——二叉树的插入构造和删除操作

#include #include #include using namespace std; #define EQ(a,b) ( (a) == (b) ) #define ...
  • minyuanxiani
  • minyuanxiani
  • 2013年09月03日 16:46
  • 1491

数据结构例程——二叉树的构造

本文是数据结构基础系列(6):树和二叉树中第13课时二叉树的构造的例程。1.由先序序列和中序序列构造二叉树 定理:任何n(n≥0)个不同节点的二叉树,都可由它的中序序列和先序序列唯一地确定。 证明(数...
  • sxhelijian
  • sxhelijian
  • 2015年10月20日 05:29
  • 4524

数据结构-二叉树和二叉查找树

先按树-二叉树-二叉查找树的顺序解释会比较清楚。 一,树 树(Tree)是n(n≥0)个结点的有限集。在任意一棵非空树中: (1)有且仅有一个特定的被称为根(Root)的结点; (2)当n>1...
  • tuke_tuke
  • tuke_tuke
  • 2015年12月20日 17:44
  • 2144

【数据结构】构造二叉树的三种方法

题目: binary tree is a tree data structure in which each node has at most two children, which are ref...
  • shujh_sysu
  • shujh_sysu
  • 2016年05月22日 15:22
  • 1405

二叉树的非递归建立

1. 问题描述: 先序非递归建立一颗以二叉链表为存储结构的二叉树。例如建立如下所示的一颗二叉树                                  A                  ...
  • gaohuaid
  • gaohuaid
  • 2013年08月21日 22:38
  • 10490

数据结构----二叉树----哈夫曼编码

1、阅读本文前,读者要对二叉树、贪心、优先队列等知识有一定了解。 2、此题比较坑,阅读之前请做好心理准备。 一、了解基本概念 1、二叉树、二叉树的构造方法、二叉树的各种遍历(不用说了吧.......
  • C20180602_csq
  • C20180602_csq
  • 2017年01月20日 21:21
  • 509

C语言构造并递归遍历二叉树

#include #include #define FALSE 1 #define ERROR 0 #define OK 1 #define ON 0 typedef struct BiTNode...
  • Ksly_Tkol
  • Ksly_Tkol
  • 2012年12月23日 17:32
  • 1829

由遍历序列构造二叉树

由遍历序列构造二叉树
  • zj20320
  • zj20320
  • 2016年07月31日 23:32
  • 1195

以后根和中根序列构造二叉树

构造二叉树template BinaryTree::BinaryTree(T postlist[], T inlist[], int n)   //以先根和中根序列构造二叉树{            ...
  • zjhzcjg
  • zjhzcjg
  • 2010年12月19日 08:53
  • 716

数据结构(14)--线索二叉树的实现

参考书籍:数据结构(C语言版)严蔚敏吴伟民编著清华大学出版社 1.什么是线索二叉树...
  • u010366748
  • u010366748
  • 2016年03月01日 10:56
  • 2061
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:数据结构—二叉树的构造
举报原因:
原因补充:

(最多只允许输入30个字)