关闭

快速傅里叶变换 FFT 板子

标签: 快速傅里叶变换板子
812人阅读 评论(0) 收藏 举报
分类:

一篇介绍FFT写的不错的blog



参考了一些大神的板子后加上理解,自己写的一个板子


题目:UOJ #34 多项式乘法



#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;

const int maxn = 410000;
const double pi=acos(-1);
struct E
{
	double x,y;
	E(){x=y=0;}
	E(double a,double b){x=a;y=b;}
}a[maxn],b[maxn],c[maxn],w[maxn];
int id[maxn],an,bn,cn,n,ln;
E operator +(E x,E y){return E(x.x+y.x,x.y+y.y);}
E operator -(E x,E y){return E(x.x-y.x,x.y-y.y);}
E operator *(E x,E y){return E(x.x*y.x-x.y*y.y,x.x*y.y+x.y*y.x);}

void fft(E *s,int sig)
{
	for(int i=0;i<n;i++)if(i<id[i])swap(s[i],s[id[i]]);
	for(int m=2;m<=n;m<<=1)
	{
		int t=m>>1,tt=n/m;
		for(int i=0;i<t;i++)
		{
			E wn=sig==1?w[i*tt]:w[n-i*tt];
			for(int j=i;j<n;j+=m)
			{
				E tx=s[j],ty=s[j+t]*wn;
				s[j]=tx+ty;
				s[j+t]=tx-ty;
			}
		}
	}
	if(sig==-1)for(int i=0;i<n;i++)s[i].x/=(double)n;
}

int main()
{
	scanf("%d%d",&an,&bn);an++;bn++;
	for(int i=0;i<an;i++) scanf("%lf",&a[i].x);
	for(int i=0;i<bn;i++) scanf("%lf",&b[i].x);
	
	n=1;ln=0;while(n<(an+bn))ln++,n<<=1;
	for(int i=0;i<n;i++) id[i]=id[i>>1]>>1|((i&1)<<(ln-1));
	for(int m=2;m<=n;m<<=1)
	{
		int t=m>>1,tt=n/m;
		for(int i=0;i<t;i++)
		{
			w[i*tt]=E(cos(i*2*pi/m),sin(i*2*pi/m));
			w[n-i*tt]=E(cos(i*2*pi/m),sin(-i*2*pi/m));
		}
	}
	
	fft(a,1);fft(b,1);
	for(int i=0;i<n;i++) c[i]=a[i]*b[i];
	fft(c,-1);
	printf("%d",int(c[0].x+0.5));
	for(int i=1;i<an+bn-1;i++)printf(" %d",int(c[i].x+0.5));
	printf("\n");
	
	return 0;
}


1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:107830次
    • 积分:4910
    • 等级:
    • 排名:第6653名
    • 原创:400篇
    • 转载:0篇
    • 译文:0篇
    • 评论:17条