二项式反演复习笔记

这篇blog讲的非常详细

列几个常用的柿子

f ( n ) = ∑ i = 0 n ( − 1 ) i ( n i ) g ( i )    ⟺    g ( n ) = ∑ i = 0 n ( − 1 ) i ( n i ) f ( i ) f(n)=\sum_{i=0}^n(-1)^i \tbinom{n}{i} g(i) \iff g(n)=\sum_{i=0}^n(-1)^i \tbinom{n}{i} f(i) f(n)=i=0n(1)i(in)g(i)g(n)=i=0n(1)i(in)f(i)

f ( n ) = ∑ i = 0 n ( n i ) g ( i )    ⟺    g ( n ) = ∑ i = 0 n ( − 1 ) n − i ( n i ) f ( i ) f(n)=\sum_{i=0}^n \tbinom{n}{i} g(i) \iff g(n)=\sum_{i=0}^n(-1)^{n-i} \tbinom{n}{i} f(i) f(n)=i=0n(in)g(i)g(n)=i=0n(1)ni(in)f(i)

f ( n ) = ∑ i = m n ( n i ) g ( i )    ⟺    g ( n ) = ∑ i = m n ( − 1 ) n − i ( n i ) f ( i ) f(n)=\sum_{i=m}^n \tbinom{n}{i} g(i) \iff g(n)=\sum_{i=m}^n(-1)^{n-i} \tbinom{n}{i} f(i) f(n)=i=mn(in)g(i)g(n)=i=mn(1)ni(in)f(i)

f ( n ) = ∑ i = n m ( i n ) g ( i )    ⟺    g ( n ) = ∑ i = n m ( − 1 ) i − n ( i n ) f ( i ) f(n)=\sum_{i=n}^m \tbinom{i}{n} g(i) \iff g(n)=\sum_{i=n}^m(-1)^{i-n} \tbinom{i}{n} f(i) f(n)=i=nm(ni)g(i)g(n)=i=nm(1)in(ni)f(i)

证明懒得写了,上面链的blog里有非常详细的证明

应用的话,主要是第3、4条柿子,可以用作将 至多 k k k、至少 k k k 的方案数,转化成恰好 k k k的方案数

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值