辣鸡错误合集&各种奇妙♂的小技巧(结论与套路)

6的一批(cai de kou jiao) 策略 先看题,看懂所有题再深入思考。 再难的题也要留出一定时间思考,不要丢了容易拿的分。 看着很难(复杂)的题目一般简单,只是需要简化题意罢了。 做比赛的时候可以多猜测。对于一个猜测的结论,最好的方法往往不是证明他,而...

2016-09-16 12:02:22

阅读数 1152

评论数 0

待办

以下算法的入门高斯消元以下算法的进一步练习矩阵乘法树链剖分

2016-05-20 20:25:28

阅读数 581

评论数 0

jzoj6177 【CTS2019Day1】随机立方体 (计数,概率)

题意 要点 直接算恰好不是很方便,考虑算至少然后容斥。 先解决容斥系数的问题: 先加上至少有K个极大的方案,再减去至少有K+1个极大的方案 * C(k + 1, k) (因为每一种方案都在前面算了这么多次),再加上… 因此容斥系数应该是(−1)x−k⋅C(x,k)(-1)^{x-k}\cdot ...

2019-05-21 21:44:55

阅读数 73

评论数 0

LOJ3045 「ZJOI2019」开关

简单的题目描述往往有着不简单的解法… 要点分析 考虑一个EGF 第i项表示长度为i的最终状态为s的序列有多少个。 再考虑上面的EGF,第i项是每一位操作了偶数次的序列有多少个。 这两个都可以递推出来,只需要知道存evxe^{vx}evx的系数就可以了。 考虑如何把EGF转OGF...

2019-05-08 22:17:28

阅读数 62

评论数 0

GDSOI2019 D2 高中生数学题 (计算组合数中的质数幂次、库默尔定理、数位dp)

库默尔定理: C(n,m)C(n,m)C(n,m)中含有的质数p幂次 = n−mn - mn−m在p进制下的借位次数 = m+(n−m)m + (n - m)m+(n−m)在p进制下的进位次数。 原理: Ans=∑k>0npk−(n−mpk+mpk)Ans = \s...

2019-05-04 10:08:15

阅读数 54

评论数 0

GDOI2019赛前复习 & 赛后总结

去年的flag 赛前复习 回文树 感觉自己并没有学过一样… 第一次知道回文树的根应该建成一个环。 无论是1做奇数根还是0做奇数根都没有关系。 记得除了偶数根,不应该有其他fail等于奇数根就行。 记得先求新点的fail再给last的转移赋值,这样不需要特判。 1做奇数根: str...

2019-05-03 22:32:26

阅读数 179

评论数 0

常系数齐次递推 / 多项式取模

例题 给定G(次数界3w左右),求F(x)=11−G(x)F(x)=\frac 1 {1-G(x)}F(x)=1−G(x)1​的第n项,保证G(x)[x0]=0G(x)[x^0]=0G(x)[x0]=0。 n在1e9以上。 有毛病 毒瘤 毒瘤 毒瘤 式子就是F(x)=1+F(x)G(...

2019-05-01 21:50:05

阅读数 20

评论数 0

动态DP相关

小声bb 去年做了保卫王国之后感觉自己会动态dp了,今天看下全都还给出题人了… 省选前临急抱佛脚吧。 动态dp是什么 就是先给一个dp问题,然后修改里面的一些值 / 给出一些限制,要你快速求出新的dp答案。 方法 大概分三种: 倍增(适用于无权值修改,只有限制的情况) 树链剖分...

2019-04-30 16:28:57

阅读数 263

评论数 0

jzoj6152. 【GDOI2019Day2模拟2019.4.29】Endless (倍增维护并查集,平方串)

对于长度为x的平方串,只需要每隔x做一个关键点,然后对相邻关键点做lcp和lcs就可以找出每一个平方串。 sa或者hash+二分都是可以的 找出平方串的区间,下面要实现的操作就是实现区间中x和x+le合并。 用倍增维护一下并查集,开log个并查集,若x,y在第i个并查集里被并起来,意味着x....

2019-04-29 22:06:31

阅读数 25

评论数 0

KD-Tree中的矩形查询

简单模板题:6121. 【GDOI2019模拟2019.4.13】数据结构 首先建树,一层按x二分,一层按y二分交替。 用algorithm中的nth_element(开始,中间,结束(开),比较函数)就可以把点分成两边。但是两边是乱序的。这是线性的. 然后把每个点控制的矩形区域更新上来,接下来...

2019-04-13 22:49:41

阅读数 82

评论数 0

半平面交

存个板子 首先加限制的四条边,然后 先去平行,然后排极角序。每次加入一条边的时候,若队头两条线交点不在新半平面内,就出掉队尾。然后队头类似 最后记得去掉尾部多加的半平面。 jzoj6093 #include <cstdio> #include <iostr...

2019-04-01 22:28:45

阅读数 531

评论数 0

多项式求ln,exp

迭代法求零点 已知fff是一个多项式对多项式的函数,现要逼近f的零点,采用倍增法: 假如要求A模xnx^nxn意义下的值,则预先求出A0为A模xn/2x^{n/2}xn/2意义下的值 由泰勒展开,f(A)=f(A0)+f′(A0)(A−A0)f(A)=f(A0)+f&#x2...

2019-02-26 12:08:59

阅读数 67

评论数 0

jzoj6025 【GDOI2019模拟2019.2.16】加农炮 (stern brocot树,类欧)

在stern brocot上走,任意分母为n的点,其到根路径的拐点最大是O(log n)级别的。(待证) 于是开始二分,判定用类欧。式子这么推 sum(a,b,c,n)sum(a,b,c,n)sum(a,b,c,n) =∑i=0n−1trunc((ax+b)/c)=\sum_{i=0}^{n-...

2019-02-17 08:32:43

阅读数 138

评论数 0

jzoj6022 【GDOI2019模拟2019.2.15】求和 (组合数取模)

很常见的推式子套路,有个组合数取模的黑科技: 现在要求C(n,1),C(n,2)…C(n,m) (n<=1e9,m<=1e6)对一个大数p取模的结果,可以先将p分解质因数,然后将出现在p中的质因子单独计算指数以避免除法,其余的部分是与p互质的,直接使...

2019-02-15 20:17:58

阅读数 95

评论数 0

PKUWC&WC2019游记

概述 经过了十天紧张刺激的腐…学习,终于能休息会了。这篇游记大概会简单地记录一下这两个冬令营的一些心得体会,然后总结自己的不足和需要提升的地方。 PKUWC 还是一如既往的下午一点半到六点,就时间安排来说个人认为不是特别好,特别是对有午睡习惯的同学。不如改成8~13? 还是PKU的风格,六题计数期...

2019-01-31 10:38:07

阅读数 483

评论数 0

jzoj5999 【WC2019模拟2019.1.14】选数 (FWT,容斥,平衡规划)

看到gcd,直接求也不好求,就可以先考虑一下反演。然后发现答案就是∑f(u)⋅ϕ\sum f(u)\cdot \phi∑f(u)⋅ϕ,f(u)是gcd是u的倍数的方案数。 有个结论是∑d∣xμ(d)⋅(x/d)=ϕ(x)\sum_{d|x}\mu(d)\cdot(x/d)=\phi(x)∑d∣...

2019-01-16 07:26:42

阅读数 69

评论数 0

拆分 (网络流,构造)

可以构造使得答案就是下界值。调整 方法是,在加入航线的过程中,保证每个点都先填满k种不同颜色,然后清零从头开始。具体地,对于一条航线(u,v),可以找到cx,cy是u,v的最小没有用过的颜色,假定cx<cy,那么从v开始一定有一条cx,cy,cx,cy…的交错链。将其整体...

2019-01-10 08:24:09

阅读数 56

评论数 0

jzoj5987 【WC2019模拟2019.1.4】仙人掌毒题 (动态圆方树维护仙人掌)

失智 又被题目吓到了 考虑树的情况,连通块数目就是总点数-存在的边。 考虑仙人掌的情况,连通块数目就是总点数-存在的边+存在的环 因为是0/1分开考虑,所以所谓存在的X就是要求相关联的点颜色一样。 使用lct维护圆方树就可以了。 算一个环都变黑的概率可以容斥,因为总环中点数是不超过n+m的,暴...

2019-01-05 15:34:26

阅读数 110

评论数 0

jzoj5983 多边形(组合数学)

啥 将相邻点的距离表示为d1,d2…dm,并且和为n 显然当di+d(i+1)>=(n+1)/2di+d(i+1)>=(n+1)/2di+d(i+1)>=(n+1)/2时出现一个锐角。 有两结论:k&am...

2019-01-03 18:44:38

阅读数 68

评论数 0

Samjia Graph (图计数, 多项式求逆 / 开根)

solution 考虑一种计数的方案,g(n)=∑x+y=nC(n,x)⋅3xyg(n) = \sum_{x+y=n} C(n,x) \cdot 3^{xy}g(n)=∑x+y=n​C(n,x)⋅3xy x,y分别是左右的点数,3的几次方意思是黑 / 白 / 没有。 容易发现,对于一个有k个连...

2018-12-27 22:48:14

阅读数 66

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭