【bzoj1084】[SCOI2005]最大子矩阵

原创 2016年08月29日 10:53:14

[SCOI2005]最大子矩阵

Description

  这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵
不能相互重叠。

Input

  第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的
分值的绝对值不超过32767)。

Output

  只有一行为k个子矩阵分值之和最大为多少。

Sample Input

3 2 2

1 -3

2 3

-2 3
Sample Output

9

本来想着m有很大很大,但是没想到最大只有二。
那就是只有两种情况。m=1或m=2。
那就没怎么难了。
状态:f[i][j][k]表示第一列到了第i个格子,第二列到了第j个格子,已经选取了k个矩阵的最大得数。
转移:先把现有的状态向后转移,转移成f[i’][j’][k],然后取矩阵,向后转移,转移成f[i’][j’][k + 1]。这里要分三种情况讨论,转移第一列,转移第二列,和两列一起转移。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[110][110],s[110][110];
int f1[110][110],f2[110][110][110];
int main()
{
    int m,n,t;
    scanf("%d%d%d",&n,&m,&t);
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            scanf("%d",&a[i][j]);
            s[j][i]=s[j][i-1]+a[i][j];
        }
    }
    int ans=0;
    if(n==1)
    {
        memset(f1,0,sizeof(f1));
        for(int i=0;i<=n;i++)
        {
            for(int k=0;k<=t;k++)
            {
                for(int j=0;j<=n;j++)
                {
                    f1[j][k]=max(f1[j][k],f1[i][k]);
                    f1[j][k+1]=max(f1[j][k+1],f1[i][k]+s[1][j]-s[1][i]); 
                }
            }
        }
        for(int i=0;i<=n;i++)
        {
            for(int j=0;j<=t;j++)
            {
                ans=max(ans,f1[i][j]);
            }
        }
        printf("%d\n",ans);return 0;
    }
    else
    {
        memset(f2,0,sizeof(f2));
        for(int i=0;i<=n;i++)  
        {
            for(int j=0;j<=n;j++)
            { 
                for(int k=0;k<=t;k++)
                {  
                    for(int kk=i+1;kk<=n;kk++)
                    {  
                        f2[kk][j][k]=max(f2[kk][j][k],f2[i][j][k]);  
                        f2[kk][j][k+1]=max(f2[kk][j][k+1],f2[i][j][k]+s[1][kk]-s[1][i]);  
                    }  
                    for(int kk=j+1;kk<=n;kk++)
                    {  
                        f2[i][kk][k]=max(f2[i][kk][k],f2[i][j][k]);  
                        f2[i][kk][k+1]=max(f2[i][kk][k+1],f2[i][j][k]+s[2][kk]-s[2][j]);  
                    }  
                    for(int kk=max(i,j)+1;kk<=n;kk++)
                    {  
                        f2[kk][kk][k]=max(f2[kk][kk][k],f2[i][j][k]);  
                        f2[kk][kk][k+1]=max(f2[kk][kk][k+1],f2[i][j][k]+s[1][kk]-s[1][max(i,j)]+s[2][kk]-s[2][max(i,j)]);  
                    }  
                }
            }
        }
        for(int i=0;i<=n;i++)
        {
            for(int j=0;j<=n;j++)
            {
                for(int k=0;k<=t;k++)
                {
                    ans=max(ans,f2[i][j][k]);
                }
            }
        }
        printf("%d\n",ans);return 0;
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

[BZOJ 1084] SCOI 2005 最大子矩阵 · 简单DP

比较魔性的题目 m 具体转移方程可直接看代码#include #include #include #include using namespace std; #define f(i,x,y)...

bzoj 1084: [SCOI2005]最大子矩阵 题解

【原题】 1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 1016  Solved: 518...

BZOJ 1084 SCOI2005 最大子矩阵 动态规划

题目大意:给出一个矩阵,求在这个矩阵中取出k个不重叠的矩阵的最大和。 思路:怎么做? 这个问题困扰我好几天的时间,终于再一次读题: 。。。 。。 。。。 2??!! 这尼...

bzoj1084: [SCOI2005]最大子矩阵-DP

现在已经能自然的想到分类讨论了。 注意到m=1或者2,当m=1时,是普通的最大连续字段和,只不过是k个: 设f[i][j]表示前i个数中取出j个矩形的最大和 转移: 选:f[i][j]=max...

【bzoj1084】 [SCOI2005]最大子矩阵

1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 2715  Solved: 1350 [Submit][S...

bzoj1084【SCOI2005】最大子矩阵

DP

bzoj 1084: [SCOI2005]最大子矩阵

当m=1的时候就是个简单的k个最大子段和就不说了 dp[i][j][k]表示第1列取到前i个数,第2列取到前j个数,共用了k个矩阵所得到的最大值

BZOJ P1084[scoi2005]最大子矩阵

随手翻到了之前做的一道水题,随便写篇题解水一水吧 最大子矩阵,一开始不会,一度以为是神题(划掉) 然后发现m m==1时 直接求序列分成k段的最大和 m==2时 f[i][j][k]表示上...

bzoj 1084: [SCOI2005]最大子矩阵 (DP)

题目描述传送门题目大意:给出一个n*m的矩阵,请你选出其中至多k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。题解m只有1,2两种,所以分开考虑一下 当m=1时,f[...

BZOJ 1084: [SCOI2005]最大子矩阵

Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。 Input 第一行为n,m,k(1≤n≤...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)