【bzoj1084】[SCOI2005]最大子矩阵

[SCOI2005]最大子矩阵

Description

  这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵
不能相互重叠。

Input

  第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的
分值的绝对值不超过32767)。

Output

  只有一行为k个子矩阵分值之和最大为多少。

Sample Input

3 2 2

1 -3

2 3

-2 3
Sample Output

9

本来想着m有很大很大,但是没想到最大只有二。
那就是只有两种情况。m=1或m=2。
那就没怎么难了。
状态:f[i][j][k]表示第一列到了第i个格子,第二列到了第j个格子,已经选取了k个矩阵的最大得数。
转移:先把现有的状态向后转移,转移成f[i’][j’][k],然后取矩阵,向后转移,转移成f[i’][j’][k + 1]。这里要分三种情况讨论,转移第一列,转移第二列,和两列一起转移。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[110][110],s[110][110];
int f1[110][110],f2[110][110][110];
int main()
{
    int m,n,t;
    scanf("%d%d%d",&n,&m,&t);
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            scanf("%d",&a[i][j]);
            s[j][i]=s[j][i-1]+a[i][j];
        }
    }
    int ans=0;
    if(n==1)
    {
        memset(f1,0,sizeof(f1));
        for(int i=0;i<=n;i++)
        {
            for(int k=0;k<=t;k++)
            {
                for(int j=0;j<=n;j++)
                {
                    f1[j][k]=max(f1[j][k],f1[i][k]);
                    f1[j][k+1]=max(f1[j][k+1],f1[i][k]+s[1][j]-s[1][i]); 
                }
            }
        }
        for(int i=0;i<=n;i++)
        {
            for(int j=0;j<=t;j++)
            {
                ans=max(ans,f1[i][j]);
            }
        }
        printf("%d\n",ans);return 0;
    }
    else
    {
        memset(f2,0,sizeof(f2));
        for(int i=0;i<=n;i++)  
        {
            for(int j=0;j<=n;j++)
            { 
                for(int k=0;k<=t;k++)
                {  
                    for(int kk=i+1;kk<=n;kk++)
                    {  
                        f2[kk][j][k]=max(f2[kk][j][k],f2[i][j][k]);  
                        f2[kk][j][k+1]=max(f2[kk][j][k+1],f2[i][j][k]+s[1][kk]-s[1][i]);  
                    }  
                    for(int kk=j+1;kk<=n;kk++)
                    {  
                        f2[i][kk][k]=max(f2[i][kk][k],f2[i][j][k]);  
                        f2[i][kk][k+1]=max(f2[i][kk][k+1],f2[i][j][k]+s[2][kk]-s[2][j]);  
                    }  
                    for(int kk=max(i,j)+1;kk<=n;kk++)
                    {  
                        f2[kk][kk][k]=max(f2[kk][kk][k],f2[i][j][k]);  
                        f2[kk][kk][k+1]=max(f2[kk][kk][k+1],f2[i][j][k]+s[1][kk]-s[1][max(i,j)]+s[2][kk]-s[2][max(i,j)]);  
                    }  
                }
            }
        }
        for(int i=0;i<=n;i++)
        {
            for(int j=0;j<=n;j++)
            {
                for(int k=0;k<=t;k++)
                {
                    ans=max(ans,f2[i][j][k]);
                }
            }
        }
        printf("%d\n",ans);return 0;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值