[SCOI2005]最大子矩阵
Description
这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵
不能相互重叠。
Input
第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的
分值的绝对值不超过32767)。
Output
只有一行为k个子矩阵分值之和最大为多少。
Sample Input
3 2 2
1 -3
2 3
-2 3
Sample Output
9
本来想着m有很大很大,但是没想到最大只有二。
那就是只有两种情况。m=1或m=2。
那就没怎么难了。
状态:f[i][j][k]表示第一列到了第i个格子,第二列到了第j个格子,已经选取了k个矩阵的最大得数。
转移:先把现有的状态向后转移,转移成f[i’][j’][k],然后取矩阵,向后转移,转移成f[i’][j’][k + 1]。这里要分三种情况讨论,转移第一列,转移第二列,和两列一起转移。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[110][110],s[110][110];
int f1[110][110],f2[110][110][110];
int main()
{
int m,n,t;
scanf("%d%d%d",&n,&m,&t);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&a[i][j]);
s[j][i]=s[j][i-1]+a[i][j];
}
}
int ans=0;
if(n==1)
{
memset(f1,0,sizeof(f1));
for(int i=0;i<=n;i++)
{
for(int k=0;k<=t;k++)
{
for(int j=0;j<=n;j++)
{
f1[j][k]=max(f1[j][k],f1[i][k]);
f1[j][k+1]=max(f1[j][k+1],f1[i][k]+s[1][j]-s[1][i]);
}
}
}
for(int i=0;i<=n;i++)
{
for(int j=0;j<=t;j++)
{
ans=max(ans,f1[i][j]);
}
}
printf("%d\n",ans);return 0;
}
else
{
memset(f2,0,sizeof(f2));
for(int i=0;i<=n;i++)
{
for(int j=0;j<=n;j++)
{
for(int k=0;k<=t;k++)
{
for(int kk=i+1;kk<=n;kk++)
{
f2[kk][j][k]=max(f2[kk][j][k],f2[i][j][k]);
f2[kk][j][k+1]=max(f2[kk][j][k+1],f2[i][j][k]+s[1][kk]-s[1][i]);
}
for(int kk=j+1;kk<=n;kk++)
{
f2[i][kk][k]=max(f2[i][kk][k],f2[i][j][k]);
f2[i][kk][k+1]=max(f2[i][kk][k+1],f2[i][j][k]+s[2][kk]-s[2][j]);
}
for(int kk=max(i,j)+1;kk<=n;kk++)
{
f2[kk][kk][k]=max(f2[kk][kk][k],f2[i][j][k]);
f2[kk][kk][k+1]=max(f2[kk][kk][k+1],f2[i][j][k]+s[1][kk]-s[1][max(i,j)]+s[2][kk]-s[2][max(i,j)]);
}
}
}
}
for(int i=0;i<=n;i++)
{
for(int j=0;j<=n;j++)
{
for(int k=0;k<=t;k++)
{
ans=max(ans,f2[i][j][k]);
}
}
}
printf("%d\n",ans);return 0;
}
return 0;
}