YOLOv8改进,YOLOv8 Neck结构引入BiFPN


在这里插入图片描述

摘要

模型效率在计算机视觉中变得越来越重要。本文系统地研究了神经网络架构设计选择用于目标检测,并提出了几项关键优化以提高效率。首先,提出了一种加权双向特征金字塔网络(BiFPN),它允许轻松快速的多尺度特征融合;其次,提出了一种复合缩放方法,该方法同时均匀地缩放所有骨干网、特征网络和框/类预测网络的分辨率、深度和宽度。基于这些优化和更好的骨干网络,开发了一系列新的目标检测器,称为EfficientDet,它在各种资源约束下始终实现比以前的技术更好的效率。

BiFPN 介绍

不同的特征网络设计如下图所示:
(a)FPN 引入了一种自上而下的路径,用于从 3 到 7 层(P3 - P7)融合多尺度特征;(b)PANet [26] 在 FPN 的基础上增加了一个自下而上的路径;(c)NAS-FPN 使用神经架构搜索找到不规则的特征网络拓扑,然后反复应用相同的模块;(d)是 BiFPN,具有更好的准确性和效率权衡。在这里插入图片描述

理论详解可以参考链接:论文地址
代码可在这个链接找到:代码地址

本文在YOLOv8中 Neck结构引入BiFPN,代码已经整理好了,跟着文章复制粘贴,即可直接运行


03-08
### BIFPN (BiFPN) 网络架构详解 #### 特征金字塔网络概述 特征金字塔网络(Feature Pyramid Network, FPN)用于多尺度目标检测,通过构建一个多尺度的特征图集合来提高检测性能。然而,传统FPN仅支持单一方向的信息流传递,在处理复杂场景下的物体检测时存在局限性。 #### 双向信息流动设计 为了克服这一挑战,BiFPN引入了双向信息流动的设计理念。这种结构不仅保留了原始自顶向下的路径,还增加了自底向上的连接方式,使得低层语义细节与高层抽象表示得以充分交互[^1]。 #### 加权特征融合机制 不同于简单的相加操作,BiFPN采用了更为灵活的加权策略来进行跨层次间的特征组合。具体而言,每个节点处都会根据相邻层级贡献的不同赋予相应的权重系数,以此达到动态调节各部分重要性的目的。这样的做法有助于突出那些对于当前任务更有价值的部分,进而改善整体表现[^2]。 #### 注意力机制的应用 值得注意的是,某些版本的BiFPN还在上述基础上集成了注意力机制,进一步强化了有效区域的选择性和响应强度。这一步骤允许模型更加聚焦于关键部位的同时抑制无关干扰因素的影响,最终实现了更好的特征提取效果[^3]。 ```python def bifpn_layer(features, num_channels=256): """ 实现一个基本的BiFPN层 参数: features(list): 输入特征列表 num_channels(int): 输出通道数 返回: list: 处理后的特征列表 """ # 自顶向下路径 p_top_down = [] for i in range(len(features)-1, -1, -1): if not p_top_down: p_in = features[i] else: p_in = tf.image.resize(p_top_down[-1], size=tf.shape(features[i])[1:3]) + features[i] p_out = conv_bn_relu(p_in, filters=num_channels) p_top_down.append(p_out) # 自底向上路径 p_bottom_up = [p_top_down.pop()] for feat in reversed(p_top_down): p_in = tf.image.resize(p_bottom_up[-1], size=tf.shape(feat)[1:3]) + feat p_out = conv_bn_relu(p_in, filters=num_channels) p_bottom_up.append(p_out) return p_bottom_up[::-1] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值