YOLOv8改进,YOLOv8 Neck结构引入BiFPN

65 篇文章 33 订阅 ¥199.90 ¥299.90

在这里插入图片描述

摘要

模型效率在计算机视觉中变得越来越重要。本文系统地研究了神经网络架构设计选择用于目标检测,并提出了几项关键优化以提高效率。首先,提出了一种加权双向特征金字塔网络(BiFPN),它允许轻松快速的多尺度特征融合;其次,提出了一种复合缩放方法,该方法同时均匀地缩放所有骨干网、特征网络和框/类预测网络的分辨率、深度和宽度。基于这些优化和更好的骨干网络,开发了一系列新的目标检测器,称为EfficientDet,它在各种资源约束下始终实现比以前的技术更好的效率。

BiFPN 介绍

不同的特征网络设计如下图所示:
(a)FPN 引入了一种自上而下的路径,用于从 3 到 7 层(P3 - P7)融合多尺度特征;(b)PANet [26] 在 FPN 的基础上增加了一个自下而上的路径;(c)NAS-FPN 使用神经架构搜索找到不规则的特征网络拓扑,然后反复应用相同的模块;(d)是 BiFPN,具有更好的准确性和效率权衡。在这里插入图片描述

理论详解可以参考链接:论文地址
代码可在这个链接找到:代码地址

本文在YOLOv8中 Neck结构引入BiFPN,代码已经整理好了,跟着文章复制粘贴,即可直接运行


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值