关闭

codeforces Round#369 div2-E ZS and The Birthday Paradox

标签: codeforces数论
188人阅读 评论(0) 收藏 举报
分类:

题意: 一年中有2^n天,问有k个人至少有两个人生日在同一天的概率,用分数表示。其中n,k<=10^18 

题解:1e6+3为素数。直接求不好求,我们可以总数-不成立的数。不成立的即为k个人中没有一个人的生日在同一天,即。而当k-1>=mod时,分子中必然含有mod的倍数,取余后分子为0;当k-1<mod时,我们可以直接求解。

由于分母中只含素数2,化简时只需求出分子中2的个数。

注意:k>2^n的情况,直接输出1 1即可

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <cmath>

using namespace std;

typedef long long LL;

const int M=1000003;

LL n,K;
LL up,down;
LL inv;
LL Calc_bit(LL K)
{
    if (K==1)return 0;
    return (K/2)+Calc_bit(K/2);
}
LL RP(LL a,LL b)
{
    LL Ans=1;
    for (;b;b>>=1){
        if (b&1)Ans=Ans*a%M;
        a=a*a%M;
    }
    return Ans;
}
void Calc_up()
{
    if (K>=2*M){
        up=0;return ;
    }
    LL simp=Calc_bit(K-1);

    up=1;
    LL bg=RP(2,n);
    for (int i=1;i<=K-1;i++)up=up*(bg-i+M)%M;
    up=up*RP(inv,simp)%M;
}
void Calc_down()
{
    LL simp=Calc_bit(K-1);
    down=RP(2,n);
    down=RP(down,K-1);
    down=down*RP(inv,simp)%M;
}
int main()
{
    inv=RP(2,M-2);
    cin>>n>>K;
    if (K> (1LL<<min(n,60LL)) ){
        puts("1 1");return 0;
    }
    Calc_up();
    Calc_down();
    up=(down-up+M)%M;
    cout<<up<<" "<<down<<endl;
    return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:7037次
    • 积分:588
    • 等级:
    • 排名:千里之外
    • 原创:53篇
    • 转载:0篇
    • 译文:2篇
    • 评论:0条