题意: 一年中有2^n天,问有k个人至少有两个人生日在同一天的概率,用分数表示。其中n,k<=10^18
题解:1e6+3为素数。直接求不好求,我们可以总数-不成立的数。不成立的即为k个人中没有一个人的生日在同一天,即。而当k-1>=mod时,分子中必然含有mod的倍数,取余后分子为0;当k-1<mod时,我们可以直接求解。
由于分母中只含素数2,化简时只需求出分子中2的个数。
注意:k>2^n的情况,直接输出1 1即可
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long LL;
const int M=1000003;
LL n,K;
LL up,down;
LL inv;
LL Calc_bit(LL K)
{
if (K==1)return 0;
return (K/2)+Calc_bit(K/2);
}
LL RP(LL a,LL b)
{
LL Ans=1;
for (;b;b>>=1){
if (b&1)Ans=Ans*a%M;
a=a*a%M;
}
return Ans;
}
void Calc_up()
{
if (K>=2*M){
up=0;return ;
}
LL simp=Calc_bit(K-1);
up=1;
LL bg=RP(2,n);
for (int i=1;i<=K-1;i++)up=up*(bg-i+M)%M;
up=up*RP(inv,simp)%M;
}
void Calc_down()
{
LL simp=Calc_bit(K-1);
down=RP(2,n);
down=RP(down,K-1);
down=down*RP(inv,simp)%M;
}
int main()
{
inv=RP(2,M-2);
cin>>n>>K;
if (K> (1LL<<min(n,60LL)) ){
puts("1 1");return 0;
}
Calc_up();
Calc_down();
up=(down-up+M)%M;
cout<<up<<" "<<down<<endl;
return 0;
}