[置顶] 非计算机专业,如何学习计算机视觉?

这两年,计算机视觉似乎火了起来计算机视觉的黄金时代真的到来了吗?。生物医学、机械自动化、土木建筑等好多专业的学生都开始研究其在各自领域的应用,一个视觉交流群里三分之一以上都不是计算机相关专业的。当然,我也是其中一员。 对于非计算机相关专业的学生而言,学习过程中往往缺少交流机会,不容易把握知识的全貌。这里仅根据个人经验谈一谈对于一名非计算机专业的学生而言,该如何学习计算机视觉。1.编程能力1.1 编...
阅读(2939) 评论(1)

ROS学习之CMakelists.txt和package.xml

package.xml当你的package里已经包含配置文件(package.xml),ROS能够找到它。执行:rospack find [包名称]。应该注意到我们刚才所创建的package.xml依赖于 roscpp 和 std_msgs.而catkin恰恰是利用这些依赖项来配置所创建的package。基本结构使用标签作为根标记文件。所需标...
阅读(58) 评论(0)

ROS常用命令行总结

Filesystem Management Toolsrospack获取程序包的有关信息。 rospack find [package] 返回程序包的路径。 rospack list 获取所有的程序包。roscd切换(cd)工作目录到某个程序包(或其子目录)。 roscd [package[/subdir]] rosls直接按程序包的名称执行ls命令。 rosls [package[/su...
阅读(69) 评论(0)

ROS官网中级教程学习总结(1-6)

教程网址:http://wiki.ros.org/cn/ROS/Tutorials。 本博客为1-6小节。手动创建ROS package 添加xml文件。当你的package里已经包含配置文件(package.xml),ROS能够找到它。执行:rospack find [包名称]。应该注意到我们刚才所创建的package.xml依赖于 roscpp 和 std_msgs.而catkin恰恰是利用...
阅读(81) 评论(0)

ROS官网初级教程学习总结(17-20)

教程网址:http://wiki.ros.org/cn/ROS/Tutorials。 本博客为10-16小节。录制与回放数据录制数据(通过创建一个bag文件)如何记录ROS系统运行时的话题数据,记录的话题数据将会累积保存到bag文件中。录制所有发布的话题rostopic list -v:检查看当前系统中发布的所有话题。 开始录制:mkdir ~/bagfiles cd ~/bagfiles r...
阅读(60) 评论(0)

ROS官网初级教程学习总结(10-16)

教程网址:http://wiki.ros.org/cn/ROS/Tutorials。 本博客为10-16小节。创建ROS消息和ROS服务消息(msg)和服务(srv)介绍 消息(msg): msg文件就是一个描述ROS中所使用消息类型的简单文本。它们会被用来生成不同语言的源代码。msg文件存放在package的msg目录下。 服务(srv): 一个srv文件描述一项服务。它包含两个部分:请求和响...
阅读(63) 评论(0)

ROS官网初级教程学习总结(5-9)

教程网址:http://wiki.ros.org/cn/ROS/Tutorials。 本博客为5-7小节。理解 ROS节点图概念概述 Nodes:节点,一个节点即为一个可执行文件。节点可以发布或接收一个话题,也可以提供或使用某种服务。 Messages:消息,消息是一种ROS数据类型,用于订阅或发布到一个话题。 Topics:话题,节点可以发布消息到话题,也可以订阅话题以接收消息。 Master...
阅读(67) 评论(0)

ROS官网初级教程学习总结(1-4)

教程网址:http://wiki.ros.org/cn/ROS/Tutorials。 本博客为1-4小节。安装并配置ROS环境安装ROS安装时记得换个好点的软件源,要不然会因为网络连接问题一直失败。管理环境export | grep ROS 主要是查看环境变量是否设置。 ROSLISP_PACKAGE_DIRECTORIES=”” //这个是关于lisp语言的 ROS_DISTRO=”...
阅读(66) 评论(0)

vim实用操作

多行注释与删除注释参考:vim常用命令之多行注释和多行删除多行删除命令输入:32,65d,删除32-65行 ndd,删除光标所在的向下n行。 :set nu 显示行号...
阅读(118) 评论(0)

最小二乘法的多元线性回归

方法介绍“最小二乘法”一句话解释:一种数学优化方法,通过最小化误差的平方和来寻找合适的数据拟合函数。 线性模型的最小二乘可以有很多方法来实现,比如直接使用矩阵运算求解析解,sklearn包(参考:用scikit-learn和pandas学习线性回归、用scikit-learn求解多元线性回归问题),或scipy里的leastsq function(参考:How to use leastsq fun...
阅读(221) 评论(0)

深度学习相关论文阅读

目标检测OverFeat文章:《OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks》rcnn代码:https://github.com/rbgirshick/rcnn,prototxt文件在\rcnn-master\finetuning\voc_2012_prototxtf...
阅读(577) 评论(0)

《视觉SLAM十四讲》书籍图片资源

chapter22-12-22-32-42-52-62-82-92-102-112-122-132-14chapter33-13-23-33-4chapter44-1chapter55-15-25-55-65-75-9chapter66-16-26-3chapter77-27-37-47-57-67-77-87-97-107-117-127-13chapter88-18-28-38-48-58-68...
阅读(662) 评论(0)

c++语言基础

虚函数多态性是面向对象语言的基本特征,多态性可以简单地概括为“一个接口,多种方法”。多态性分为静态多态性(编译过程中绑定)和动态多态性。 函数重载(和运算符重载)属于静态多态性,一个函数名(调用接口)对应着几个不同的函数原型(方法)。 虚函数属于动态多态性,对比如下: 通过对象名访问虚函数时,调用哪个类的函数取决于定义对象名的类型(对象类型是基类时,就调用基类的函数;对象类型是子类时,就调用子...
阅读(202) 评论(0)

Python实用操作

函数参数默认参数定义时:必选参数在前,默认参数在后。 调用时:多个默认参数间没有顺序# 定义 def enroll(name, gender, age=6, city='Beijing'): ...# 调用 enroll('Adam', 'M', city='Tianjin')可变参数可变参数用于应对函数参数个数不确定的情况,当然这种情况也可以不嫌麻烦地把参数作为list或tuple传进来...
阅读(470) 评论(0)

经典卷积神经网络介绍

AlexNet 2012年,Hinton的学生Alex Krizhevsky提出了深度卷积神经网络模型AlexNet,获得当年ILSVRC(Image Large Scale Visual Recognition Challenge)比赛分类项目的冠军。AlexNet主要使用到的新技术如下:a) 成功使用ReLU作为CNN的激活函数,并验证了其在较深网络中的有效性,解决了Sigmod在网络较深时的...
阅读(509) 评论(0)

为什么会出现Batch Normalization层

训练模型时的收敛速度问题众所周知,模型训练需要使用高性能的GPU,还要花费大量的训练时间。除了数据量大及模型复杂等硬性因素外,数据分布的不断变化使得我们必须使用较小的学习率、较好的权重初值和不容易饱和的激活函数(如sigmoid,正负两边都会饱和)来训练模型。这样速度自然就慢了下来。下面先简单示例一下数据分布的不断变化为什么会带来这些问题,如图: 我们使用Wx+b=0对小黄和小绿进行分类。由于...
阅读(441) 评论(0)

tensorflow实现迁移学习

此例程出自《TensorFlow实战Google深度学习框架》6.5.2小节 卷积神经网络迁移学习。 数据集来自http://download.tensorflow.org/example_images/flower_photos.tgz ,及谷歌提供的Inception-v3模型https://storage.googleapis.com/download.tensorflow.org/mode...
阅读(2368) 评论(11)

tensorflow实现LeNet-5模型

此例程出自《TensorFlow实战Google深度学习框架》6.4.1小节 经典卷积网络模型之LeNet-5模型,具体可搜索“LeNet-5, convolutional neural networks”。 例程中的网络模型与原始LeNet-5模型不太一样,网络结构如下:INPUT: [28x28x1] weights: 0 CONV5-32: [28x28x32]...
阅读(1765) 评论(1)

TensorFlow最佳实践样例程序

此例程出自《TensorFlow实战Google深度学习框架》第5章 MNIST数字识别问题,很好的一个例子。工程目录:-mnist_best -dataset //存放数据集的文件夹,可以http://yann.lecun.com/exdb/mnist/下载 -model //存放模型的文件夹 -mnist_eval.py //定义了测试过程 -mnist_...
阅读(1391) 评论(0)

为什么使用卷积层替代CNN末尾的全连接层

原本CNN网络的经典结构是: 卷积层——>池化层——>……——>全连接层FCN的出现为什么要把CNN网络最后的全连接层特换为卷积层?或者换句话说这样会带来什么好处呢? 1. 首先,说一下卷积层和全连接层的区别:卷积层为局部连接;而全连接层则使用图像的全局信息。可以想象一下,最大的局部是不是就等于全局了?这首先说明全连接层使用卷积层来替代的可行性。 2. 然后,究竟使用卷积层代替全连接层会带来什...
阅读(1908) 评论(0)

tensorflow常用函数及概念

collection集合tf.add_to_collection('losses', mse_loss) loss = tf.get_collection('losses')在一个计算图中,可以通过集合(collection)来管理不同类别的资源(可以是张量、变量或者运行Tensorflow程序所需要的队列资源等)。比如通过tf.add_to_collection函数可以将资源加入一个或多个集合中,...
阅读(1197) 评论(0)
438条 共22页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:382545次
    • 积分:8056
    • 等级:
    • 排名:第2088名
    • 原创:422篇
    • 转载:1篇
    • 译文:15篇
    • 评论:116条
    自我介绍
    博客专栏
    最新评论