Scrapy简介
Scrapy,Python开发的一个快速,高层次的屏幕抓取和web抓取框架,用于抓取web站点并从页面中提取结构化的数据。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。
Scrapy吸引人的地方在于它是一个框架,任何人都可以根据需求方便的修改。它也提供了多种类型爬虫的基类,如BaseSpider、sitemap爬虫等,最新版本又提供了web2.0爬虫的支持。
Scrapy架构
- 引擎(Scrapy Engine),用来处理整个系统的数据流处理,触发事务。
- 调度器(Scheduler),用来接受引擎发过来的请求,压入队列中,并在引擎再次请求的时候返回。
- 下载器(Downloader),用于下载网页内容,并将网页内容返回给蜘蛛。
- 蜘蛛(Spiders),蜘蛛是主要干活的,用它来制订特定域名或网页的解析规则。编写用于分析response并提取item(即获取到的item)或额外跟进的URL的类。 每个spider负责处理一个特定(或一些)网站。
- 项目管道(Item Pipeline),负责处理有蜘蛛从网页中抽取的项目,他的主要任务是清晰、验证和存储数据。当页面被蜘蛛解析后,将被发送到项目管道,并经过几个特定的次序处理数据。
- 下载器中间件(Downloader Middlewares),位于Scrapy引擎和下载器之间的钩子框架,主要是处理Scrapy引擎与下载器之间的请求及响应。
- 蜘蛛中间件(Spider Middlewares),介于Scrapy引擎和蜘蛛之间的钩子框架,主要工作是处理蜘蛛的响应输入和请求输出。
- 调度中间件(Scheduler Middlewares),介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。
Scrapy的安装
在Ubuntu系统的终端中输入
pip install scrapy
开始第一个Scrapy爬虫
进入要创建Scrapy项目的目录,然后在终端输入
scrapy startproject learnScrapy
用PyCharm打开这个项目
创建第一个Spider
在Spider文件夹新建一个quote_spider.py
自定义一个类继承scrapy.Spider的类
然后必须要定义两个属性一个方法
- name(Spider的名字):用于启动Spider
- start_urls:需要抓取的起始Url
- parse()方法:用于解析网页源代码
class QuotesSpider(scrapy.Spider):
name="quotes"
start_urls =[
'http://blog.csdn.net/nonamest/article/details/75206787'
]
def parse(self, response):
with open("/home/hadoop/Desktop/1.html","wb") as f
f.write(response.body)
如此,第一个最简单的Scrapy爬虫便做好了,它可以爬取一篇博客的源代码
一般来说scrapy要在命令行中启动,今天介绍一个在PyCharm中启动的办法,新建一个main.py
from scrapy import cmdline
cmdline.execute("scrapy crawl quotes".split())
从PyCharm中启动main文件就可以启动这个爬虫了
解析网页
更多时候我们希望获取的不是网页源代码,而是网页中的某些元素。在之前Python的原生爬虫中,我们采用的是BeautifulSoup来进行网页解析。但在Scrapy中有着更为简单的方法。
- css (教程链接)http://www.w3school.com.cn/css/index.asp
- Xpath(教程链接)http://www.w3school.com.cn/xpath/index.asp
在这里主要用Xpath来进行解析网页,Scrapy框架中的parse()方法中的response对象是有一个xpath()方法的,这为我们使用xpath解析网页带来了便利。
In [1]: response.xpath('//title')
Out[1]: [<Selector xpath='//title' data=u'<title>Open Directory - Computers: Progr'>]
In [2]: response.xpath('//title').extract()
Out[2]: [u'<title>Open Directory - Computers: Programming: Languages: Python: Books</title>'
其中xpath()方法获得的是一个对象,如果要获得具体选取的元素要使用extract()方法
加入解析后的spider代码如下
class QuotesSpider(scrapy.Spider):
name="quotes"
start_urls =[
'http://blog.csdn.net/nonamest/article/details/75206787'
]
def parse(self, response):
title=''.join(response.xpath("//span[@class='link_title']/a/text()").extract())
with open("/home/lhn/Desktop/1.html","w") as f:
f.write(title)
打开桌面1.html
基于Hadoop平台下运用PMI指标的组合词判断
成功获取到标题
- 我推荐使用Chrome浏览器,这个浏览器的Inspect element的搜索功能可以使用Xpath语法查找,这样可以更加方便地进行调试。